當前位置: 首頁>>代碼示例>>Python>>正文


Python resnet50.preprocess_input方法代碼示例

本文整理匯總了Python中keras.applications.resnet50.preprocess_input方法的典型用法代碼示例。如果您正苦於以下問題:Python resnet50.preprocess_input方法的具體用法?Python resnet50.preprocess_input怎麽用?Python resnet50.preprocess_input使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在keras.applications.resnet50的用法示例。


在下文中一共展示了resnet50.preprocess_input方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: main

# 需要導入模塊: from keras.applications import resnet50 [as 別名]
# 或者: from keras.applications.resnet50 import preprocess_input [as 別名]
def main(self):
        self.logger.info('Will load keras model')
        model = ResNet50(weights='imagenet')
        self.logger.info('Keras model loaded')
        feature_list = []
        img_path_list = []
        for raw_file in self.inp.raw_files:
            media_path = raw_file.path
            file_list = os.listdir(media_path)
            total = float(len(file_list))
            for index, img_file in enumerate(file_list):
                img_path = os.path.join(media_path, img_file)
                img_path_list.append(img_path)
                img = image.load_img(img_path, target_size=(224, 224))
                x = keras_image.img_to_array(img)
                x = np.expand_dims(x, axis=0)
                x = preprocess_input(x)
                # extract features
                scores = model.predict(x)
                sim_class = np.argmax(scores)
                print('Scores {}\nSimClass: {}'.format(scores, sim_class))
                self.outp.request_annos(img_path, img_sim_class=sim_class)
                self.logger.info('Requested annotation for: {} (cluster: {})'.format(img_path, sim_class))
                self.update_progress(index*100/total) 
開發者ID:l3p-cv,項目名稱:lost,代碼行數:26,代碼來源:cluster_resnet.py

示例2: load_images_for_keras

# 需要導入模塊: from keras.applications import resnet50 [as 別名]
# 或者: from keras.applications.resnet50 import preprocess_input [as 別名]
def load_images_for_keras(self, img_path, target_size=(224, 224)):

        features = []
        filenames = sorted(os.listdir(img_path))

        for filename in filenames:

            img = image.load_img(os.path.join(img_path, filename), target_size=target_size)
            img = image.img_to_array(img)
            img = np.expand_dims(img, axis=0)
            img = preprocess_input(img)

            feature = self.model.predict(img)

            if img is not None:
                features.append(feature)

        return features 
開發者ID:Ekim-Yurtsever,項目名稱:DeepTL-Lane-Change-Classification,代碼行數:20,代碼來源:dataset.py

示例3: gen

# 需要導入模塊: from keras.applications import resnet50 [as 別名]
# 或者: from keras.applications.resnet50 import preprocess_input [as 別名]
def gen(session, data, labels, batch_size):
    def _f():
        start = 0
        end = start + batch_size
        n = data.shape[0]

        while True:
            X_batch = session.run(resize_op, {img_placeholder: data[start:end]})
            X_batch = preprocess_input(X_batch)
            y_batch = labels[start:end]
            start += batch_size
            end += batch_size
            if start >= n:
                start = 0
                end = batch_size

            print(start, end)
            yield (X_batch, y_batch)

    return _f 
開發者ID:udacity,項目名稱:CarND-Transfer-Learning-Lab,代碼行數:22,代碼來源:run_bottleneck.py

示例4: pred_data

# 需要導入模塊: from keras.applications import resnet50 [as 別名]
# 或者: from keras.applications.resnet50 import preprocess_input [as 別名]
def pred_data():

    with open('./models/cat_dog.yaml') as yamlfile:
        loaded_model_yaml = yamlfile.read()
    model = model_from_yaml(loaded_model_yaml)
    model.load_weights('./models/cat_dog.h5')

    sgd = Adam(lr=0.0003)
    model.compile(loss='categorical_crossentropy',optimizer=sgd, metrics=['accuracy'])

    images = []
    path='./data/test/'
    for f in os.listdir(path):
        img = image.load_img(path + f, target_size=image_size)
        img_array = image.img_to_array(img)

        x = np.expand_dims(img_array, axis=0)
        x = preprocess_input(x)
        result = model.predict_classes(x,verbose=0)

        print(f,result[0]) 
開發者ID:jarvisqi,項目名稱:deep_learning,代碼行數:23,代碼來源:cat_dog.py

示例5: predict

# 需要導入模塊: from keras.applications import resnet50 [as 別名]
# 或者: from keras.applications.resnet50 import preprocess_input [as 別名]
def predict(model, img, target_size, top_n=3):
    """Run model prediction on image
    Args:
        model: keras model
        img: PIL format image
        target_size: (w,h) tuple
        top_n: # of top predictions to return
        Returns:
            list of predicted labels and their probabilities
            """

    if img.size != target_size:
        img = img.resize(target_size)

    x = image.img_to_array(img)
    x = np.expand_dims(x, axis=0)
    x = preprocess_input(x)

    with graph.as_default():
        preds = model.predict(x)

    return decode_predictions(preds, top=top_n)[0] 
開發者ID:scorelab,項目名稱:Elphas,代碼行數:24,代碼來源:resnet.py

示例6: pix2depth

# 需要導入模塊: from keras.applications import resnet50 [as 別名]
# 或者: from keras.applications.resnet50 import preprocess_input [as 別名]
def pix2depth(path, model):
    model_name = 'p2d'
    originalImage = cv2.imread(path)
    loaded_model =  model_list['pix2depth'][model]
    file_name = model+'_'+path.split('/')[-1]
    output_file = os.path.join(output_path,file_name)
    if model =='CNN':
        originalImage = cv2.resize(originalImage,(img_dim,img_dim))
        x = preprocess_input(originalImage/1.)
    elif model == 'CycleGAN':
        test(path)
        os.system('cp gautam/inf_results/imgs/fakeA_0_0.jpg %s' % output_file)
    else:
        originalImage = cv2.resize(originalImage,(256,256))
        x = originalImage/255.
    if not model == 'CycleGAN':
        p1 = get_depth_map(x, loaded_model)
        cv2.imwrite(output_file,p1)
    return output_file 
開發者ID:gautam678,項目名稱:Pix2Depth,代碼行數:21,代碼來源:main.py

示例7: depth2pix

# 需要導入模塊: from keras.applications import resnet50 [as 別名]
# 或者: from keras.applications.resnet50 import preprocess_input [as 別名]
def depth2pix(path,model):
    model_name = 'd2p'
    originalImage = cv2.imread(path)
    loaded_model =  model_list['depth2pix'][model]
    file_name = model+'_'+path.split('/')[-1]
    output_file = os.path.join(output_path,file_name)
    if model =='CNN':
        img_dim = 256
        originalImage = cv2.resize(originalImage,(img_dim,img_dim))
        x = preprocess_input(originalImage/1.)
    elif model == 'CycleGAN':
        test_dep(path)
        os.system('cp gautam/inf_results/imgs/fakeB_0_0.jpg %s' % output_file)
    else:
        originalImage = cv2.resize(originalImage,(256,256))
        x = originalImage/255.
    if not model == 'CycleGAN':
        p1 = get_depth_map(x, loaded_model)
        cv2.imwrite(output_file,p1)
    return output_file 
開發者ID:gautam678,項目名稱:Pix2Depth,代碼行數:22,代碼來源:main.py

示例8: _extract

# 需要導入模塊: from keras.applications import resnet50 [as 別名]
# 或者: from keras.applications.resnet50 import preprocess_input [as 別名]
def _extract(fp, model):
        # Load the image, setting the size to 224 x 224
        img = image.load_img(fp, target_size=(224, 224))
        
        # Convert the image to a numpy array, resize it (1, 2, 244, 244), and preprocess it
        img_data = image.img_to_array(img)
        img_data = np.expand_dims(img_data, axis=0)
        img_data = preprocess_input(img_data)

        # Extract the features
        np_features = model.predict(img_data)[0]
        
        # Convert from Numpy to a list of values
        return np.char.mod('%f', np_features) 
開發者ID:zegami,項目名稱:image-similarity-clustering,代碼行數:16,代碼來源:features.py

示例9: test_imagenet_preprocess_input

# 需要導入模塊: from keras.applications import resnet50 [as 別名]
# 或者: from keras.applications.resnet50 import preprocess_input [as 別名]
def test_imagenet_preprocess_input(self):
        # compare our tf implementation to the np implementation in keras
        image = np.zeros((256, 256, 3))

        sess = tf.Session()
        with sess.as_default():
            x = tf.placeholder(tf.float32, shape=[256, 256, 3])
            processed = keras_apps._imagenet_preprocess_input(x, (256, 256)),
            sparkdl_preprocessed_input = sess.run(processed, {x: image})

        keras_preprocessed_input = resnet50.preprocess_input(np.expand_dims(image, axis=0))

        # NOTE: precision errors occur for decimal > 5
        np.testing.assert_array_almost_equal(sparkdl_preprocessed_input, keras_preprocessed_input,
                                             decimal=5) 
開發者ID:databricks,項目名稱:spark-deep-learning,代碼行數:17,代碼來源:named_image_test.py

示例10: test_spimage_converter_module

# 需要導入模塊: from keras.applications import resnet50 [as 別名]
# 或者: from keras.applications.resnet50 import preprocess_input [as 別名]
def test_spimage_converter_module(self):
        """ spimage converter module must preserve original image """
        img_fpaths = glob(os.path.join(_getSampleJPEGDir(), '*.jpg'))

        def exec_gfn_spimg_decode(spimg_dict, img_dtype):
            gfn = gfac.buildSpImageConverter('BGR', img_dtype)
            with IsolatedSession() as issn:
                feeds, fetches = issn.importGraphFunction(gfn, prefix="")
                feed_dict = dict(
                    (tnsr, spimg_dict[tfx.op_name(tnsr, issn.graph)]) for tnsr in feeds)
                img_out = issn.run(fetches[0], feed_dict=feed_dict)
            return img_out

        def check_image_round_trip(img_arr):
            spimg_dict = imageArrayToStruct(img_arr).asDict()
            spimg_dict['data'] = bytes(spimg_dict['data'])
            img_arr_out = exec_gfn_spimg_decode(
                spimg_dict, imageTypeByOrdinal(spimg_dict['mode']).dtype)
            self.assertTrue(np.all(img_arr_out == img_arr))

        for fp in img_fpaths:
            img = load_img(fp)

            img_arr_byte = img_to_array(img).astype(np.uint8)
            check_image_round_trip(img_arr_byte)

            img_arr_float = img_to_array(img).astype(np.float32)
            check_image_round_trip(img_arr_float)

            img_arr_preproc = iv3.preprocess_input(img_to_array(img))
            check_image_round_trip(img_arr_preproc) 
開發者ID:databricks,項目名稱:spark-deep-learning,代碼行數:33,代碼來源:test_pieces.py

示例11: test_bare_keras_module

# 需要導入模塊: from keras.applications import resnet50 [as 別名]
# 或者: from keras.applications.resnet50 import preprocess_input [as 別名]
def test_bare_keras_module(self):
        """ Keras GraphFunctions should give the same result as standard Keras models """
        img_fpaths = glob(os.path.join(_getSampleJPEGDir(), '*.jpg'))

        for model_gen, preproc_fn, target_size in [(InceptionV3, iv3.preprocess_input, model_sizes['InceptionV3']),
                                      (Xception, xcpt.preprocess_input, model_sizes['Xception']),
                                      (ResNet50, rsnt.preprocess_input, model_sizes['ResNet50'])]:

            keras_model = model_gen(weights="imagenet")
            _preproc_img_list = []
            for fpath in img_fpaths:
                img = load_img(fpath, target_size=target_size)
                # WARNING: must apply expand dimensions first, or ResNet50 preprocessor fails
                img_arr = np.expand_dims(img_to_array(img), axis=0)
                _preproc_img_list.append(preproc_fn(img_arr))

            imgs_input = np.vstack(_preproc_img_list)

            preds_ref = keras_model.predict(imgs_input)

            gfn_bare_keras = GraphFunction.fromKeras(keras_model)

            with IsolatedSession(using_keras=True) as issn:
                K.set_learning_phase(0)
                feeds, fetches = issn.importGraphFunction(gfn_bare_keras)
                preds_tgt = issn.run(fetches[0], {feeds[0]: imgs_input})

            np.testing.assert_array_almost_equal(preds_tgt,
                                                 preds_ref,
                                                 decimal=self.featurizerCompareDigitsExact) 
開發者ID:databricks,項目名稱:spark-deep-learning,代碼行數:32,代碼來源:test_pieces.py

示例12: test_pipeline

# 需要導入模塊: from keras.applications import resnet50 [as 別名]
# 或者: from keras.applications.resnet50 import preprocess_input [as 別名]
def test_pipeline(self):
        """ Pipeline should provide correct function composition """
        img_fpaths = glob(os.path.join(_getSampleJPEGDir(), '*.jpg'))

        xcpt_model = Xception(weights="imagenet")
        stages = [('spimage', gfac.buildSpImageConverter('BGR', 'float32')),
                  ('xception', GraphFunction.fromKeras(xcpt_model))]
        piped_model = GraphFunction.fromList(stages)

        for fpath in img_fpaths:
            target_size = model_sizes['Xception']
            img = load_img(fpath, target_size=target_size)
            img_arr = np.expand_dims(img_to_array(img), axis=0)
            img_input = xcpt.preprocess_input(img_arr)
            preds_ref = xcpt_model.predict(img_input)

            spimg_input_dict = imageArrayToStruct(img_input).asDict()
            spimg_input_dict['data'] = bytes(spimg_input_dict['data'])
            with IsolatedSession() as issn:
                # Need blank import scope name so that spimg fields match the input names
                feeds, fetches = issn.importGraphFunction(piped_model, prefix="")
                feed_dict = dict(
                    (tnsr, spimg_input_dict[tfx.op_name(tnsr, issn.graph)]) for tnsr in feeds)
                preds_tgt = issn.run(fetches[0], feed_dict=feed_dict)
                # Uncomment the line below to see the graph
                # tfx.write_visualization_html(issn.graph,
                # NamedTemporaryFile(prefix="gdef", suffix=".html").name)

            np.testing.assert_array_almost_equal(preds_tgt,
                                                 preds_ref,
                                                 decimal=self.featurizerCompareDigitsExact) 
開發者ID:databricks,項目名稱:spark-deep-learning,代碼行數:33,代碼來源:test_pieces.py

示例13: computeFeatures

# 需要導入模塊: from keras.applications import resnet50 [as 別名]
# 或者: from keras.applications.resnet50 import preprocess_input [as 別名]
def computeFeatures(self, video):
    x = vgg16.preprocess_input(video)
    features = self.model.predict(x)
    return features 
開發者ID:jonasrothfuss,項目名稱:videofeatures,代碼行數:6,代碼來源:CNNFeatures.py

示例14: __fetch_nn_feature

# 需要導入模塊: from keras.applications import resnet50 [as 別名]
# 或者: from keras.applications.resnet50 import preprocess_input [as 別名]
def __fetch_nn_feature(batch_image, batch_file_name):
        batch_image = np.concatenate(batch_image, axis=0)
        x = preprocess_input(batch_image)

        features = res50_model.predict(x)
        features_reduce = features.squeeze()
        for idx in range(len(batch_file_name)):
            image_nn_feature_dict[batch_file_name[idx]] = features_reduce[idx]
        # print(features_reduce)
        print(features_reduce.shape) 
開發者ID:liuguiyangnwpu,項目名稱:MassImageRetrieval,代碼行數:12,代碼來源:nn_feature_extraction.py

示例15: main

# 需要導入模塊: from keras.applications import resnet50 [as 別名]
# 或者: from keras.applications.resnet50 import preprocess_input [as 別名]
def main(self):
        self.logger.info('Will load keras model')
        model = ResNet50(weights='imagenet')
        self.logger.info('Keras model loaded')
        feature_list = []
        img_path_list = []
        # Request only MIA annotations for annotations of first stage
        # that have been annotated in current iteration cycle.
        img_annos = list(filter(lambda x: x.iteration == self.iteration, 
            self.inp.img_annos))
        total = len(img_annos)
        for index, img_anno in enumerate(img_annos):
            annos = img_anno.to_vec('anno.data')
            if annos:
                types = img_anno.to_vec('anno.dtype')
                img = skimage.io.imread(self.get_abs_path(img_anno.img_path))
                crops, anno_boxes = anno_helper.crop_boxes(annos, types, 
                    img, context=0.01)
                sim_classes = []
                for crop in crops:
                    # img = image.load_img(img_path, target_size=(224, 224))
                    crop_img = image.img_to_array(image.array_to_img(crop, scale=False).resize((224,224)))
                    x = keras_image.img_to_array(crop_img)
                    x = np.expand_dims(x, axis=0)
                    x = preprocess_input(x)
                    # extract features
                    scores = model.predict(x)
                    sim_classes.append(np.argmax(scores))
                self.outp.request_annos(img_anno.img_path, 
                    annos=annos, anno_types=types, anno_sim_classes=sim_classes)
                self.logger.info('Requested annotation for: {}\n{}\n{}'.format(img_anno.img_path, types, sim_classes))
                self.update_progress(index*100/total) 
開發者ID:l3p-cv,項目名稱:lost,代碼行數:34,代碼來源:cluster_resnet.py


注:本文中的keras.applications.resnet50.preprocess_input方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。