本文整理匯總了Python中keras.applications.inception_v3.preprocess_input方法的典型用法代碼示例。如果您正苦於以下問題:Python inception_v3.preprocess_input方法的具體用法?Python inception_v3.preprocess_input怎麽用?Python inception_v3.preprocess_input使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類keras.applications.inception_v3
的用法示例。
在下文中一共展示了inception_v3.preprocess_input方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: extract_features
# 需要導入模塊: from keras.applications import inception_v3 [as 別名]
# 或者: from keras.applications.inception_v3 import preprocess_input [as 別名]
def extract_features(path, model_type):
if model_type == 'inceptionv3':
from keras.applications.inception_v3 import preprocess_input
target_size = (299, 299)
elif model_type == 'vgg16':
from keras.applications.vgg16 import preprocess_input
target_size = (224, 224)
# Get CNN Model from model.py
model = CNNModel(model_type)
features = dict()
# Extract features from each photo
for name in tqdm(os.listdir(path)):
# Loading and resizing image
filename = path + name
image = load_img(filename, target_size=target_size)
# Convert the image pixels to a numpy array
image = img_to_array(image)
# Reshape data for the model
image = image.reshape((1, image.shape[0], image.shape[1], image.shape[2]))
# Prepare the image for the CNN Model model
image = preprocess_input(image)
# Pass image into model to get encoded features
feature = model.predict(image, verbose=0)
# Store encoded features for the image
image_id = name.split('.')[0]
features[image_id] = feature
return features
示例2: extract_features
# 需要導入模塊: from keras.applications import inception_v3 [as 別名]
# 或者: from keras.applications.inception_v3 import preprocess_input [as 別名]
def extract_features(filename, model, model_type):
if model_type == 'inceptionv3':
from keras.applications.inception_v3 import preprocess_input
target_size = (299, 299)
elif model_type == 'vgg16':
from keras.applications.vgg16 import preprocess_input
target_size = (224, 224)
# Loading and resizing image
image = load_img(filename, target_size=target_size)
# Convert the image pixels to a numpy array
image = img_to_array(image)
# Reshape data for the model
image = image.reshape((1, image.shape[0], image.shape[1], image.shape[2]))
# Prepare the image for the CNN Model model
image = preprocess_input(image)
# Pass image into model to get encoded features
features = model.predict(image, verbose=0)
return features
# Load the tokenizer
示例3: test_load_image_vs_keras
# 需要導入模塊: from keras.applications import inception_v3 [as 別名]
# 或者: from keras.applications.inception_v3 import preprocess_input [as 別名]
def test_load_image_vs_keras(self):
g = tf.Graph()
with g.as_default():
image_arr = utils.imageInputPlaceholder()
# keras expects array in RGB order, we get it from image schema in BGR => need to flip
preprocessed = preprocess_input(imageIO._reverseChannels(image_arr))
output_col = "transformed_image"
transformer = TFImageTransformer(channelOrder='BGR', inputCol="image", outputCol=output_col, graph=g,
inputTensor=image_arr, outputTensor=preprocessed.name,
outputMode="vector")
image_df = image_utils.getSampleImageDF()
df = transformer.transform(image_df.limit(5))
for row in df.collect():
processed = np.array(row[output_col]).astype(np.float32)
# compare to keras loading
images = self._loadImageViaKeras(row["image"]['origin'])
image = images[0]
image.shape = (1, image.shape[0] * image.shape[1] * image.shape[2])
keras_processed = image[0]
np.testing.assert_array_almost_equal(keras_processed, processed, decimal=6)
示例4: test_load_image_vs_keras_RGB
# 需要導入模塊: from keras.applications import inception_v3 [as 別名]
# 或者: from keras.applications.inception_v3 import preprocess_input [as 別名]
def test_load_image_vs_keras_RGB(self):
g = tf.Graph()
with g.as_default():
image_arr = utils.imageInputPlaceholder()
# keras expects array in RGB order, we get it from image schema in BGR => need to flip
preprocessed = preprocess_input(image_arr)
output_col = "transformed_image"
transformer = TFImageTransformer(channelOrder='RGB', inputCol="image", outputCol=output_col, graph=g,
inputTensor=image_arr, outputTensor=preprocessed.name,
outputMode="vector")
image_df = image_utils.getSampleImageDF()
df = transformer.transform(image_df.limit(5))
for row in df.collect():
processed = np.array(row[output_col], dtype = np.float32)
# compare to keras loading
images = self._loadImageViaKeras(row["image"]['origin'])
image = images[0]
image.shape = (1, image.shape[0] * image.shape[1] * image.shape[2])
keras_processed = image[0]
np.testing.assert_array_almost_equal(keras_processed, processed, decimal = 6)
# Test full pre-processing for InceptionV3 as an example of a simple computation graph
示例5: _imagenet_preprocess_input
# 需要導入模塊: from keras.applications import inception_v3 [as 別名]
# 或者: from keras.applications.inception_v3 import preprocess_input [as 別名]
def _imagenet_preprocess_input(x, input_shape):
"""
For ResNet50, VGG models. For InceptionV3 and Xception it's okay to use the
keras version (e.g. InceptionV3.preprocess_input) as the code path they hit
works okay with tf.Tensor inputs. The following was translated to tf ops from
https://github.com/fchollet/keras/blob/fb4a0849cf4dc2965af86510f02ec46abab1a6a4/keras/applications/imagenet_utils.py#L52
It's a possibility to change the implementation in keras to look like the
following and modified to work with BGR images (standard in Spark), but not doing it for now.
"""
# assuming 'BGR'
# Zero-center by mean pixel
mean = np.ones(input_shape + (3,), dtype=np.float32)
mean[..., 0] = 103.939
mean[..., 1] = 116.779
mean[..., 2] = 123.68
return x - mean
示例6: predict
# 需要導入模塊: from keras.applications import inception_v3 [as 別名]
# 或者: from keras.applications.inception_v3 import preprocess_input [as 別名]
def predict(model, img, target_size):
"""Run model prediction on image
Args:
model: keras model
img: PIL format image
target_size: (w,h) tuple
Returns:
list of predicted labels and their probabilities
"""
if img.size != target_size:
img = img.resize(target_size)
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)
preds = model.predict(x)
return preds[0]
示例7: gen
# 需要導入模塊: from keras.applications import inception_v3 [as 別名]
# 或者: from keras.applications.inception_v3 import preprocess_input [as 別名]
def gen(session, data, labels, batch_size):
def _f():
start = 0
end = start + batch_size
n = data.shape[0]
while True:
X_batch = session.run(resize_op, {img_placeholder: data[start:end]})
X_batch = preprocess_input(X_batch)
y_batch = labels[start:end]
start += batch_size
end += batch_size
if start >= n:
start = 0
end = batch_size
print(start, end)
yield (X_batch, y_batch)
return _f
示例8: extract
# 需要導入模塊: from keras.applications import inception_v3 [as 別名]
# 或者: from keras.applications.inception_v3 import preprocess_input [as 別名]
def extract(self, image_path):
img = image.load_img(image_path, target_size=(299, 299))
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)
# Get the prediction.
features = self.model.predict(x)
if self.weights is None:
# For imagenet/default network:
features = features[0]
else:
# For loaded network:
features = features[0]
return features
示例9: predict
# 需要導入模塊: from keras.applications import inception_v3 [as 別名]
# 或者: from keras.applications.inception_v3 import preprocess_input [as 別名]
def predict(image_file):
"""
Predict the top 3 categories for the given image file.
"""
img = image.load_img(image_file, target_size=(299, 299))
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)
results = model.predict(x)
top3 = decode_predictions(results, top=3)[0]
return [
{'label': label, 'description': description,
'probability': probability * 100.0}
for label, description, probability in top3
]
示例10: predict
# 需要導入模塊: from keras.applications import inception_v3 [as 別名]
# 或者: from keras.applications.inception_v3 import preprocess_input [as 別名]
def predict(model, img, target_size):
"""Run model prediction on image
Args:
model: keras model
img: PIL format image
target_size: (w,h) tuple
Returns:
list of predicted labels and their probabilities
"""
if img.size != target_size:
img = img.resize(target_size)
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)
preds = model.predict(x)
return preds[0]
示例11: preprocess_image
# 需要導入模塊: from keras.applications import inception_v3 [as 別名]
# 或者: from keras.applications.inception_v3 import preprocess_input [as 別名]
def preprocess_image(image_path):
img = image.load_img(image_path)
img = image.img_to_array(img)
img = np.expand_dims(img, axis=0)
img = inception_v3.preprocess_input(img)
return img
示例12: loadAndPreprocessKerasInceptionV3
# 需要導入模塊: from keras.applications import inception_v3 [as 別名]
# 或者: from keras.applications.inception_v3 import preprocess_input [as 別名]
def loadAndPreprocessKerasInceptionV3(raw_uri):
# this is the canonical way to load and prep images in keras
uri = raw_uri[5:] if raw_uri.startswith("file:/") else raw_uri
image = img_to_array(load_img(uri, target_size=InceptionV3Constants.INPUT_SHAPE))
image = np.expand_dims(image, axis=0)
return preprocess_input(image)
示例13: _loadImageViaKeras
# 需要導入模塊: from keras.applications import inception_v3 [as 別名]
# 或者: from keras.applications.inception_v3 import preprocess_input [as 別名]
def _loadImageViaKeras(self, raw_uri):
uri = raw_uri[5:] if raw_uri.startswith("file:/") else raw_uri
image = img_to_array(load_img(uri))
image = np.expand_dims(image, axis=0)
return preprocess_input(image)
示例14: _preprocessingInceptionV3Transformed
# 需要導入模塊: from keras.applications import inception_v3 [as 別名]
# 或者: from keras.applications.inception_v3 import preprocess_input [as 別名]
def _preprocessingInceptionV3Transformed(self, outputMode, outputCol):
g = tf.Graph()
with g.as_default():
image_arr = utils.imageInputPlaceholder()
resized_images = tf.image.resize_images(image_arr, InceptionV3Constants.INPUT_SHAPE)
# keras expects array in RGB order, we get it from image schema in BGR => need to flip
processed_images = preprocess_input(imageIO._reverseChannels(resized_images))
self.assertEqual(processed_images.shape[1], InceptionV3Constants.INPUT_SHAPE[0])
self.assertEqual(processed_images.shape[2], InceptionV3Constants.INPUT_SHAPE[1])
transformer = TFImageTransformer(channelOrder='BGR', inputCol="image", outputCol=outputCol, graph=g,
inputTensor=image_arr.name, outputTensor=processed_images,
outputMode=outputMode)
image_df = image_utils.getSampleImageDF()
return transformer.transform(image_df.limit(5))
示例15: test_keras_consistency
# 需要導入模塊: from keras.applications import inception_v3 [as 別名]
# 或者: from keras.applications.inception_v3 import preprocess_input [as 別名]
def test_keras_consistency(self):
""" Exported model in Keras should get same result as original """
img_fpaths = glob(os.path.join(_getSampleJPEGDir(), '*.jpg'))
def keras_load_and_preproc(fpath):
img = load_img(fpath, target_size=(299, 299))
img_arr = img_to_array(img)
img_iv3_input = iv3.preprocess_input(img_arr)
return np.expand_dims(img_iv3_input, axis=0)
imgs_iv3_input = np.vstack([keras_load_and_preproc(fp) for fp in img_fpaths])
model_ref = InceptionV3(weights="imagenet")
preds_ref = model_ref.predict(imgs_iv3_input)
with IsolatedSession(using_keras=True) as issn:
K.set_learning_phase(0)
model = InceptionV3(weights="imagenet")
gfn = issn.asGraphFunction(model.inputs, model.outputs)
with IsolatedSession(using_keras=True) as issn:
K.set_learning_phase(0)
feeds, fetches = issn.importGraphFunction(gfn, prefix="InceptionV3")
preds_tgt = issn.run(fetches[0], {feeds[0]: imgs_iv3_input})
np.testing.assert_array_almost_equal(preds_tgt, preds_ref, decimal=5)