本文整理匯總了Python中keras.applications.inception_v3.InceptionV3方法的典型用法代碼示例。如果您正苦於以下問題:Python inception_v3.InceptionV3方法的具體用法?Python inception_v3.InceptionV3怎麽用?Python inception_v3.InceptionV3使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類keras.applications.inception_v3
的用法示例。
在下文中一共展示了inception_v3.InceptionV3方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: RNNModel
# 需要導入模塊: from keras.applications import inception_v3 [as 別名]
# 或者: from keras.applications.inception_v3 import InceptionV3 [as 別名]
def RNNModel(vocab_size, max_len, rnnConfig, model_type):
embedding_size = rnnConfig['embedding_size']
if model_type == 'inceptionv3':
# InceptionV3 outputs a 2048 dimensional vector for each image, which we'll feed to RNN Model
image_input = Input(shape=(2048,))
elif model_type == 'vgg16':
# VGG16 outputs a 4096 dimensional vector for each image, which we'll feed to RNN Model
image_input = Input(shape=(4096,))
image_model_1 = Dropout(rnnConfig['dropout'])(image_input)
image_model = Dense(embedding_size, activation='relu')(image_model_1)
caption_input = Input(shape=(max_len,))
# mask_zero: We zero pad inputs to the same length, the zero mask ignores those inputs. E.g. it is an efficiency.
caption_model_1 = Embedding(vocab_size, embedding_size, mask_zero=True)(caption_input)
caption_model_2 = Dropout(rnnConfig['dropout'])(caption_model_1)
caption_model = LSTM(rnnConfig['LSTM_units'])(caption_model_2)
# Merging the models and creating a softmax classifier
final_model_1 = concatenate([image_model, caption_model])
final_model_2 = Dense(rnnConfig['dense_units'], activation='relu')(final_model_1)
final_model = Dense(vocab_size, activation='softmax')(final_model_2)
model = Model(inputs=[image_input, caption_input], outputs=final_model)
model.compile(loss='categorical_crossentropy', optimizer='adam')
return model
示例2: model
# 需要導入模塊: from keras.applications import inception_v3 [as 別名]
# 或者: from keras.applications.inception_v3 import InceptionV3 [as 別名]
def model(self, preprocessed, featurize):
# Model provided by Keras. All cotributions by Keras are provided subject to the
# MIT license located at https://github.com/fchollet/keras/blob/master/LICENSE
# and subject to the below additional copyrights and licenses.
#
# Copyright 2016 The TensorFlow Authors. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
From Keras: These weights are released under the Apache License 2.0.
"""
return inception_v3.InceptionV3(input_tensor=preprocessed, weights="imagenet",
include_top=(not featurize))
示例3: _imagenet_preprocess_input
# 需要導入模塊: from keras.applications import inception_v3 [as 別名]
# 或者: from keras.applications.inception_v3 import InceptionV3 [as 別名]
def _imagenet_preprocess_input(x, input_shape):
"""
For ResNet50, VGG models. For InceptionV3 and Xception it's okay to use the
keras version (e.g. InceptionV3.preprocess_input) as the code path they hit
works okay with tf.Tensor inputs. The following was translated to tf ops from
https://github.com/fchollet/keras/blob/fb4a0849cf4dc2965af86510f02ec46abab1a6a4/keras/applications/imagenet_utils.py#L52
It's a possibility to change the implementation in keras to look like the
following and modified to work with BGR images (standard in Spark), but not doing it for now.
"""
# assuming 'BGR'
# Zero-center by mean pixel
mean = np.ones(input_shape + (3,), dtype=np.float32)
mean[..., 0] = 103.939
mean[..., 1] = 116.779
mean[..., 2] = 123.68
return x - mean
示例4: __init__
# 需要導入模塊: from keras.applications import inception_v3 [as 別名]
# 或者: from keras.applications.inception_v3 import InceptionV3 [as 別名]
def __init__(self):
parser = argparse.ArgumentParser(description='Process the inputs')
parser.add_argument('--path',help='image directory')
parser.add_argument('--class_folders',help='class images folder names')
parser.add_argument('--dim',type=int,help='Image dimensions to process')
parser.add_argument('--lr',type=float,help='learning rate',default=1e-4)
parser.add_argument('--batch_size',type=int,help='batch size')
parser.add_argument('--epochs',type=int,help='no of epochs to train')
parser.add_argument('--initial_layers_to_freeze',type=int,help='the initial layers to freeze')
parser.add_argument('--model',help='Standard Model to load',default='InceptionV3')
parser.add_argument('--folds',type=int,help='num of cross validation folds',default=5)
parser.add_argument('--outdir',help='output directory')
args = parser.parse_args()
self.path = args.path
self.class_folders = json.loads(args.class_folders)
self.dim = int(args.dim)
self.lr = float(args.lr)
self.batch_size = int(args.batch_size)
self.epochs = int(args.epochs)
self.initial_layers_to_freeze = int(args.initial_layers_to_freeze)
self.model = args.model
self.folds = int(args.folds)
self.outdir = args.outdir
示例5: inception_pseudo
# 需要導入模塊: from keras.applications import inception_v3 [as 別名]
# 或者: from keras.applications.inception_v3 import InceptionV3 [as 別名]
def inception_pseudo(self,dim=224,freeze_layers=30,full_freeze='N'):
model = InceptionV3(weights='imagenet',include_top=False)
x = model.output
x = GlobalAveragePooling2D()(x)
x = Dense(512, activation='relu')(x)
x = Dropout(0.5)(x)
x = Dense(512, activation='relu')(x)
x = Dropout(0.5)(x)
out = Dense(5,activation='softmax')(x)
model_final = Model(input = model.input,outputs=out)
if full_freeze != 'N':
for layer in model.layers[0:freeze_layers]:
layer.trainable = False
return model_final
# ResNet50 Model for transfer Learning
示例6: inception_pseudo
# 需要導入模塊: from keras.applications import inception_v3 [as 別名]
# 或者: from keras.applications.inception_v3 import InceptionV3 [as 別名]
def inception_pseudo(self,dim=224,freeze_layers=30,full_freeze='N'):
model = InceptionV3(weights='imagenet',include_top=False)
x = model.output
x = GlobalAveragePooling2D()(x)
x = Dense(512, activation='relu')(x)
x = Dropout(0.5)(x)
x = Dense(512, activation='relu')(x)
x = Dropout(0.5)(x)
out = Dense(1)(x)
model_final = Model(input = model.input,outputs=out)
if full_freeze != 'N':
for layer in model.layers[0:freeze_layers]:
layer.trainable = False
return model_final
# ResNet50 Model for transfer Learning
示例7: inception_pseudo
# 需要導入模塊: from keras.applications import inception_v3 [as 別名]
# 或者: from keras.applications.inception_v3 import InceptionV3 [as 別名]
def inception_pseudo(self,dim=224,freeze_layers=10,full_freeze='N'):
model = InceptionV3(weights='imagenet',include_top=False)
x = model.output
x = GlobalAveragePooling2D()(x)
x = Dense(512, activation='relu')(x)
x = Dropout(0.5)(x)
x = Dense(512, activation='relu')(x)
x = Dropout(0.5)(x)
out = Dense(5,activation='softmax')(x)
model_final = Model(input = model.input,outputs=out)
if full_freeze != 'N':
for layer in model.layers[0:freeze_layers]:
layer.trainable = False
return model_final
# ResNet50 Model for transfer Learning
示例8: _build_image_embedding
# 需要導入模塊: from keras.applications import inception_v3 [as 別名]
# 或者: from keras.applications.inception_v3 import InceptionV3 [as 別名]
def _build_image_embedding(self):
image_model = InceptionV3(include_top=False, weights='imagenet',
pooling='avg')
for layer in image_model.layers:
layer.trainable = False
dense_input = BatchNormalization(axis=-1)(image_model.output)
image_dense = Dense(units=self._embedding_size,
kernel_regularizer=self._regularizer,
kernel_initializer=self._initializer
)(dense_input)
# Add timestep dimension
image_embedding = RepeatVector(1)(image_dense)
image_input = image_model.input
return image_input, image_embedding
示例9: inception
# 需要導入模塊: from keras.applications import inception_v3 [as 別名]
# 或者: from keras.applications.inception_v3 import InceptionV3 [as 別名]
def inception(self):
"""Build the structure of a convolutional neural network from input
image data to the last hidden layer on the model of a similar manner
than Inception-V4
See: Szegedy, Vanhoucke, Ioffe, Shlens. Rethinking the Inception
Architecture for Computer Vision. ArXiv technical report, 2015.
Returns
-------
tensor
(batch_size, nb_labels)-shaped output predictions, that have to be
compared with ground-truth values
"""
inception_model = inception_v3.InceptionV3(
input_tensor=self.X, include_top=False
)
y = K.layers.GlobalAveragePooling2D()(inception_model.output)
return self.output_layer(y, depth=self.nb_labels)
示例10: _get_base_model
# 需要導入模塊: from keras.applications import inception_v3 [as 別名]
# 或者: from keras.applications.inception_v3 import InceptionV3 [as 別名]
def _get_base_model(self):
"""
:return: base model from Keras based on user-supplied model name
"""
if self.model_name == 'inception_v3':
return InceptionV3(weights='imagenet', include_top=False)
elif self.model_name == 'xception':
return Xception(weights='imagenet', include_top=False)
elif self.model_name == 'vgg16':
return VGG16(weights='imagenet', include_top=False)
elif self.model_name == 'vgg19':
return VGG19(weights='imagenet', include_top=False)
elif self.model_name == 'resnet50':
return ResNet50(weights='imagenet', include_top=False)
else:
raise ValueError('Cannot find base model %s' % self.model_name)
示例11: cnn_spatial
# 需要導入模塊: from keras.applications import inception_v3 [as 別名]
# 或者: from keras.applications.inception_v3 import InceptionV3 [as 別名]
def cnn_spatial(self, weights='imagenet'):
# create the base pre-trained model
base_model = InceptionV3(weights=weights, include_top=False)
# add a global spatial average pooling layer
x = base_model.output
x = GlobalAveragePooling2D()(x)
# let's add a fully-connected layer
x = Dense(1024, activation='relu')(x)
# and a logistic layer
predictions = Dense(self.nb_classes, activation='softmax')(x)
# this is the model we will train
model = Model(inputs=base_model.input, outputs=predictions)
return model
示例12: build_model_feature_extraction
# 需要導入模塊: from keras.applications import inception_v3 [as 別名]
# 或者: from keras.applications.inception_v3 import InceptionV3 [as 別名]
def build_model_feature_extraction():
# create the base pre-trained model
base_model = InceptionV3(weights='imagenet', include_top=False)
# add a global spatial average pooling layer
x = base_model.output
x = GlobalAveragePooling2D()(x)
# let's add a fully-connected layer
x = Dense(1024, activation='relu')(x)
# and a logistic layer
predictions = Dense(1, activation='sigmoid')(x)
# this is the model we will train
model = Model(inputs=base_model.input, outputs=predictions)
# first: train only the top layers (which were randomly initialized)
# i.e. freeze all convolutional InceptionV3 layers
for layer in base_model.layers:
layer.trainable = False
# compile the model (should be done *after* setting layers to non-trainable)
model.compile(optimizer='rmsprop', loss='binary_crossentropy', metrics=['accuracy'])
return model
示例13: unfreeze
# 需要導入模塊: from keras.applications import inception_v3 [as 別名]
# 或者: from keras.applications.inception_v3 import InceptionV3 [as 別名]
def unfreeze(self,layers):
"""
unfreeze a specified number of InceptionV3 layers ard recompile model
"""
inception_layers = 311
slice = inception_layers-layers
for layer in self.model.layers[:slice]:
layer.trainable = False
for layer in self.model.layers[slice:]:
layer.trainable = True
self.model.compile(optimizer=SGD(lr=self.lr, momentum=0.9), loss='categorical_crossentropy', metrics=['accuracy'])
# train a model from scratch given a set of training parameters
# choose whether to save the model
示例14: CNNModel
# 需要導入模塊: from keras.applications import inception_v3 [as 別名]
# 或者: from keras.applications.inception_v3 import InceptionV3 [as 別名]
def CNNModel(model_type):
if model_type == 'inceptionv3':
model = InceptionV3()
elif model_type == 'vgg16':
model = VGG16()
model.layers.pop()
model = Model(inputs=model.inputs, outputs=model.layers[-1].output)
return model
示例15: AlternativeRNNModel
# 需要導入模塊: from keras.applications import inception_v3 [as 別名]
# 或者: from keras.applications.inception_v3 import InceptionV3 [as 別名]
def AlternativeRNNModel(vocab_size, max_len, rnnConfig, model_type):
embedding_size = rnnConfig['embedding_size']
if model_type == 'inceptionv3':
# InceptionV3 outputs a 2048 dimensional vector for each image, which we'll feed to RNN Model
image_input = Input(shape=(2048,))
elif model_type == 'vgg16':
# VGG16 outputs a 4096 dimensional vector for each image, which we'll feed to RNN Model
image_input = Input(shape=(4096,))
image_model_1 = Dense(embedding_size, activation='relu')(image_input)
image_model = RepeatVector(max_len)(image_model_1)
caption_input = Input(shape=(max_len,))
# mask_zero: We zero pad inputs to the same length, the zero mask ignores those inputs. E.g. it is an efficiency.
caption_model_1 = Embedding(vocab_size, embedding_size, mask_zero=True)(caption_input)
# Since we are going to predict the next word using the previous words
# (length of previous words changes with every iteration over the caption), we have to set return_sequences = True.
caption_model_2 = LSTM(rnnConfig['LSTM_units'], return_sequences=True)(caption_model_1)
# caption_model = TimeDistributed(Dense(embedding_size, activation='relu'))(caption_model_2)
caption_model = TimeDistributed(Dense(embedding_size))(caption_model_2)
# Merging the models and creating a softmax classifier
final_model_1 = concatenate([image_model, caption_model])
# final_model_2 = LSTM(rnnConfig['LSTM_units'], return_sequences=False)(final_model_1)
final_model_2 = Bidirectional(LSTM(rnnConfig['LSTM_units'], return_sequences=False))(final_model_1)
# final_model_3 = Dense(rnnConfig['dense_units'], activation='relu')(final_model_2)
# final_model = Dense(vocab_size, activation='softmax')(final_model_3)
final_model = Dense(vocab_size, activation='softmax')(final_model_2)
model = Model(inputs=[image_input, caption_input], outputs=final_model)
model.compile(loss='categorical_crossentropy', optimizer='adam')
# model.compile(loss='categorical_crossentropy', optimizer='rmsprop')
return model