當前位置: 首頁>>代碼示例>>Python>>正文


Python keras.applications方法代碼示例

本文整理匯總了Python中keras.applications方法的典型用法代碼示例。如果您正苦於以下問題:Python keras.applications方法的具體用法?Python keras.applications怎麽用?Python keras.applications使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在keras的用法示例。


在下文中一共展示了keras.applications方法的5個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: download_imagenet

# 需要導入模塊: import keras [as 別名]
# 或者: from keras import applications [as 別名]
def download_imagenet(self):
        """ Download pre-trained weights for the specified backbone name.
        This name is in the format {backbone}_weights_tf_dim_ordering_tf_
        kernels_notop
        where backbone is the densenet + number of layers (e.g. densenet121).
        For more info check the explanation from the keras densenet script 
        itself:
            https://github.com/keras-team/keras/blob/master/keras/applications
            /densenet.py
        """
        origin = 'https://github.com/fchollet/deep-learning-models/releases/'\
            'download/v0.8/'
        file_name = '{}_weights_tf_dim_ordering_tf_kernels_notop.h5'

        # load weights
        if keras.backend.image_data_format() == 'channels_first':
            raise ValueError(
                'Weights for "channels_first" format are not available.')

        weights_url = origin + file_name.format(self.backbone)
        return get_file(file_name.format(self.backbone),
                        weights_url, cache_subdir='models') 
開發者ID:advboxes,項目名稱:perceptron-benchmark,代碼行數:24,代碼來源:densenet.py

示例2: download_imagenet

# 需要導入模塊: import keras [as 別名]
# 或者: from keras import applications [as 別名]
def download_imagenet(self):
        """ Download pre-trained weights for the specified backbone name.
        This name is in the format {backbone}_weights_tf_dim_ordering_tf_kernels_notop
        where backbone is the densenet + number of layers (e.g. densenet121).
        For more info check the explanation from the keras densenet script itself:
            https://github.com/keras-team/keras/blob/master/keras/applications/densenet.py
        """
        origin    = 'https://github.com/fchollet/deep-learning-models/releases/download/v0.8/'
        file_name = '{}_weights_tf_dim_ordering_tf_kernels_notop.h5'

        # load weights
        if keras.backend.image_data_format() == 'channels_first':
            raise ValueError('Weights for "channels_first" format are not available.')

        weights_url = origin + file_name.format(self.backbone)
        return get_file(file_name.format(self.backbone), weights_url, cache_subdir='models') 
開發者ID:weecology,項目名稱:DeepForest,代碼行數:18,代碼來源:densenet.py

示例3: create_cnn_model

# 需要導入模塊: import keras [as 別名]
# 或者: from keras import applications [as 別名]
def create_cnn_model(size_output=None, tf_print=False):
    """
    create keras model with convolution layers of MobileNet and added fully connected layers on to top
    :param size_output: number of nodes in the output layer
    :param tf_print:    True/False to print
    :return: keras model object
    """

    if size_output is None:
        # get number of attrubutes, needed for defining the final layer size of network
        df_attr = pd.read_csv(path_celeba_att, sep='\s+', header=1, index_col=0)
        size_output = df_attr.shape[1]

    # Load the convolutional layers of pretrained model: mobilenet
    base_model = keras.applications.mobilenet.MobileNet(include_top=False, input_shape=(128,128,3),
                                                          alpha=1, depth_multiplier=1,
                                                          dropout=0.001, weights="imagenet",
                                                          input_tensor=None, pooling=None)

    # add fully connected layers
    fc0 = base_model.output
    fc0_pool = layers.GlobalAveragePooling2D(data_format='channels_last', name='fc0_pool')(fc0)
    fc1 = layers.Dense(256, activation='relu', name='fc1_dense')(fc0_pool)
    fc2 = layers.Dense(size_output, activation='tanh', name='fc2_dense')(fc1)

    model = keras.models.Model(inputs=base_model.input, outputs=fc2)

    # freeze the early layers
    for layer in base_model.layers:
        layer.trainable = False

    model.compile(optimizer='sgd', loss='mean_squared_error')

    if tf_print:
        print('use convolution layers of MobileNet, add fully connected layers')
        print(model.summary())

    return model 
開發者ID:SummitKwan,項目名稱:transparent_latent_gan,代碼行數:40,代碼來源:cnn_face_attr_celeba.py

示例4: t_read_image

# 需要導入模塊: import keras [as 別名]
# 或者: from keras import applications [as 別名]
def t_read_image(loc):
    t_image = cv2.imread(loc)
    t_image = cv2.resize(t_image, (T_G_HEIGHT,T_G_WIDTH))
    t_image = t_image.astype("float32")
    t_image = keras.applications.resnet50.preprocess_input(t_image, data_format='channels_last')

    return t_image

# loads a set of images from a text index file 
開發者ID:noelcodella,項目名稱:tripletloss-keras-tensorflow,代碼行數:11,代碼來源:tripletloss.py

示例5: createModel

# 需要導入模塊: import keras [as 別名]
# 或者: from keras import applications [as 別名]
def createModel(emb_size):

    # Initialize a ResNet50_ImageNet Model
    resnet_input = kl.Input(shape=(T_G_WIDTH,T_G_HEIGHT,T_G_NUMCHANNELS))
    resnet_model = keras.applications.resnet50.ResNet50(weights='imagenet', include_top = False, input_tensor=resnet_input)

    # New Layers over ResNet50
    net = resnet_model.output
    #net = kl.Flatten(name='flatten')(net)
    net = kl.GlobalAveragePooling2D(name='gap')(net)
    #net = kl.Dropout(0.5)(net)
    net = kl.Dense(emb_size,activation='relu',name='t_emb_1')(net)
    net = kl.Lambda(lambda  x: K.l2_normalize(x,axis=1), name='t_emb_1_l2norm')(net)

    # model creation
    base_model = Model(resnet_model.input, net, name="base_model")

    # triplet framework, shared weights
    input_shape=(T_G_WIDTH,T_G_HEIGHT,T_G_NUMCHANNELS)
    input_anchor = kl.Input(shape=input_shape, name='input_anchor')
    input_positive = kl.Input(shape=input_shape, name='input_pos')
    input_negative = kl.Input(shape=input_shape, name='input_neg')

    net_anchor = base_model(input_anchor)
    net_positive = base_model(input_positive)
    net_negative = base_model(input_negative)

    # The Lamda layer produces output using given function. Here its Euclidean distance.
    positive_dist = kl.Lambda(euclidean_distance, name='pos_dist')([net_anchor, net_positive])
    negative_dist = kl.Lambda(euclidean_distance, name='neg_dist')([net_anchor, net_negative])
    tertiary_dist = kl.Lambda(euclidean_distance, name='ter_dist')([net_positive, net_negative])

    # This lambda layer simply stacks outputs so both distances are available to the objective
    stacked_dists = kl.Lambda(lambda vects: K.stack(vects, axis=1), name='stacked_dists')([positive_dist, negative_dist, tertiary_dist])

    model = Model([input_anchor, input_positive, input_negative], stacked_dists, name='triple_siamese')

    # Setting up optimizer designed for variable learning rate

    # Variable Learning Rate per Layers
    lr_mult_dict = {}
    last_layer = ''
    for layer in resnet_model.layers:
        # comment this out to refine earlier layers
        # layer.trainable = False  
        # print layer.name
        lr_mult_dict[layer.name] = 1
        # last_layer = layer.name
    lr_mult_dict['t_emb_1'] = 100

    base_lr = 0.0001
    momentum = 0.9
    v_optimizer = LR_SGD(lr=base_lr, momentum=momentum, decay=0.0, nesterov=False, multipliers = lr_mult_dict)

    model.compile(optimizer=v_optimizer, loss=triplet_loss, metrics=[accuracy])

    return model 
開發者ID:noelcodella,項目名稱:tripletloss-keras-tensorflow,代碼行數:59,代碼來源:tripletloss.py


注:本文中的keras.applications方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。