本文整理匯總了Python中keras.applications.Xception方法的典型用法代碼示例。如果您正苦於以下問題:Python applications.Xception方法的具體用法?Python applications.Xception怎麽用?Python applications.Xception使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類keras.applications
的用法示例。
在下文中一共展示了applications.Xception方法的5個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_bare_keras_module
# 需要導入模塊: from keras import applications [as 別名]
# 或者: from keras.applications import Xception [as 別名]
def test_bare_keras_module(self):
""" Keras GraphFunctions should give the same result as standard Keras models """
img_fpaths = glob(os.path.join(_getSampleJPEGDir(), '*.jpg'))
for model_gen, preproc_fn, target_size in [(InceptionV3, iv3.preprocess_input, model_sizes['InceptionV3']),
(Xception, xcpt.preprocess_input, model_sizes['Xception']),
(ResNet50, rsnt.preprocess_input, model_sizes['ResNet50'])]:
keras_model = model_gen(weights="imagenet")
_preproc_img_list = []
for fpath in img_fpaths:
img = load_img(fpath, target_size=target_size)
# WARNING: must apply expand dimensions first, or ResNet50 preprocessor fails
img_arr = np.expand_dims(img_to_array(img), axis=0)
_preproc_img_list.append(preproc_fn(img_arr))
imgs_input = np.vstack(_preproc_img_list)
preds_ref = keras_model.predict(imgs_input)
gfn_bare_keras = GraphFunction.fromKeras(keras_model)
with IsolatedSession(using_keras=True) as issn:
K.set_learning_phase(0)
feeds, fetches = issn.importGraphFunction(gfn_bare_keras)
preds_tgt = issn.run(fetches[0], {feeds[0]: imgs_input})
np.testing.assert_array_almost_equal(preds_tgt,
preds_ref,
decimal=self.featurizerCompareDigitsExact)
示例2: test_pipeline
# 需要導入模塊: from keras import applications [as 別名]
# 或者: from keras.applications import Xception [as 別名]
def test_pipeline(self):
""" Pipeline should provide correct function composition """
img_fpaths = glob(os.path.join(_getSampleJPEGDir(), '*.jpg'))
xcpt_model = Xception(weights="imagenet")
stages = [('spimage', gfac.buildSpImageConverter('BGR', 'float32')),
('xception', GraphFunction.fromKeras(xcpt_model))]
piped_model = GraphFunction.fromList(stages)
for fpath in img_fpaths:
target_size = model_sizes['Xception']
img = load_img(fpath, target_size=target_size)
img_arr = np.expand_dims(img_to_array(img), axis=0)
img_input = xcpt.preprocess_input(img_arr)
preds_ref = xcpt_model.predict(img_input)
spimg_input_dict = imageArrayToStruct(img_input).asDict()
spimg_input_dict['data'] = bytes(spimg_input_dict['data'])
with IsolatedSession() as issn:
# Need blank import scope name so that spimg fields match the input names
feeds, fetches = issn.importGraphFunction(piped_model, prefix="")
feed_dict = dict(
(tnsr, spimg_input_dict[tfx.op_name(tnsr, issn.graph)]) for tnsr in feeds)
preds_tgt = issn.run(fetches[0], feed_dict=feed_dict)
# Uncomment the line below to see the graph
# tfx.write_visualization_html(issn.graph,
# NamedTemporaryFile(prefix="gdef", suffix=".html").name)
np.testing.assert_array_almost_equal(preds_tgt,
preds_ref,
decimal=self.featurizerCompareDigitsExact)
示例3: test_validate_keras_xception
# 需要導入模塊: from keras import applications [as 別名]
# 或者: from keras.applications import Xception [as 別名]
def test_validate_keras_xception(self):
input_tensor = Input(shape=(224, 224, 3))
model = Xception(weights="imagenet", input_tensor=input_tensor)
file_name = "keras"+model.name+".pmml"
pmml_obj = KerasToPmml(model,dataSet="image",predictedClasses=[str(i) for i in range(1000)])
pmml_obj.export(open(file_name,'w'),0)
self.assertEqual(self.schema.is_valid(file_name), True)
示例4: test_xception
# 需要導入模塊: from keras import applications [as 別名]
# 或者: from keras.applications import Xception [as 別名]
def test_xception():
app = applications.Xception
last_dim = 2048
_test_application_basic(app)
_test_application_notop(app, last_dim)
_test_application_variable_input_channels(app, last_dim)
_test_app_pooling(app, last_dim)
示例5: get_imagenet_architecture
# 需要導入模塊: from keras import applications [as 別名]
# 或者: from keras.applications import Xception [as 別名]
def get_imagenet_architecture(architecture, variant, size, alpha, output_layer, include_top=False, weights='imagenet'):
from keras import applications, Model
if include_top:
assert output_layer == 'last'
if size == 'auto':
size = get_image_size(architecture, variant, size)
shape = (size, size, 3)
if architecture == 'densenet':
if variant == 'auto':
variant = 'densenet-121'
if variant == 'densenet-121':
model = applications.DenseNet121(weights=weights, include_top=include_top, input_shape=shape)
elif variant == 'densenet-169':
model = applications.DenseNet169(weights=weights, include_top=include_top, input_shape=shape)
elif variant == 'densenet-201':
model = applications.DenseNet201(weights=weights, include_top=include_top, input_shape=shape)
elif architecture == 'inception-resnet-v2':
model = applications.InceptionResNetV2(weights=weights, include_top=include_top, input_shape=shape)
elif architecture == 'mobilenet':
model = applications.MobileNet(weights=weights, include_top=include_top, input_shape=shape, alpha=alpha)
elif architecture == 'mobilenet-v2':
model = applications.MobileNetV2(weights=weights, include_top=include_top, input_shape=shape, alpha=alpha)
elif architecture == 'nasnet':
if variant == 'auto':
variant = 'large'
if variant == 'large':
model = applications.NASNetLarge(weights=weights, include_top=include_top, input_shape=shape)
else:
model = applications.NASNetMobile(weights=weights, include_top=include_top, input_shape=shape)
elif architecture == 'resnet-50':
model = applications.ResNet50(weights=weights, include_top=include_top, input_shape=shape)
elif architecture == 'vgg-16':
model = applications.VGG16(weights=weights, include_top=include_top, input_shape=shape)
elif architecture == 'vgg-19':
model = applications.VGG19(weights=weights, include_top=include_top, input_shape=shape)
elif architecture == 'xception':
model = applications.Xception(weights=weights, include_top=include_top, input_shape=shape)
elif architecture == 'inception-v3':
model = applications.InceptionV3(weights=weights, include_top=include_top, input_shape=shape)
if output_layer != 'last':
try:
if isinstance(output_layer, int):
layer = model.layers[output_layer]
else:
layer = model.get_layer(output_layer)
except Exception:
raise VergeMLError('layer not found: {}'.format(output_layer))
model = Model(inputs=model.input, outputs=layer.output)
return model