本文整理匯總了Python中keras.applications.ResNet50方法的典型用法代碼示例。如果您正苦於以下問題:Python applications.ResNet50方法的具體用法?Python applications.ResNet50怎麽用?Python applications.ResNet50使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類keras.applications
的用法示例。
在下文中一共展示了applications.ResNet50方法的10個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: set_dataset
# 需要導入模塊: from keras import applications [as 別名]
# 或者: from keras.applications import ResNet50 [as 別名]
def set_dataset(image_path, label_path, feature_extract_option=0, feature_path='/mit_resnet_train.pickle'):
df = pd.read_csv(label_path, header=0, usecols=[3, 4])
target_data = np.zeros([len(df['no_event'].tolist()), 2])
target_data[:, 0] = df['no_event'].tolist()
target_data[:, 1] = df['critical'].tolist()
data = DataSet()
data.risk_one_hot = target_data
if feature_extract_option == 0:
backbone_model = ResNet50(weights='imagenet')
backbone_model = Model(inputs=backbone_model.input, outputs=backbone_model.get_layer(index=-2).output)
data.model = backbone_model
data.extract_features(image_path, option='fixed frame amount', number_of_frames=190)
elif feature_extract_option == 1:
data.video_features = DataSet.loader(image_path + feature_path)
return data
示例2: test_bare_keras_module
# 需要導入模塊: from keras import applications [as 別名]
# 或者: from keras.applications import ResNet50 [as 別名]
def test_bare_keras_module(self):
""" Keras GraphFunctions should give the same result as standard Keras models """
img_fpaths = glob(os.path.join(_getSampleJPEGDir(), '*.jpg'))
for model_gen, preproc_fn, target_size in [(InceptionV3, iv3.preprocess_input, model_sizes['InceptionV3']),
(Xception, xcpt.preprocess_input, model_sizes['Xception']),
(ResNet50, rsnt.preprocess_input, model_sizes['ResNet50'])]:
keras_model = model_gen(weights="imagenet")
_preproc_img_list = []
for fpath in img_fpaths:
img = load_img(fpath, target_size=target_size)
# WARNING: must apply expand dimensions first, or ResNet50 preprocessor fails
img_arr = np.expand_dims(img_to_array(img), axis=0)
_preproc_img_list.append(preproc_fn(img_arr))
imgs_input = np.vstack(_preproc_img_list)
preds_ref = keras_model.predict(imgs_input)
gfn_bare_keras = GraphFunction.fromKeras(keras_model)
with IsolatedSession(using_keras=True) as issn:
K.set_learning_phase(0)
feeds, fetches = issn.importGraphFunction(gfn_bare_keras)
preds_tgt = issn.run(fetches[0], {feeds[0]: imgs_input})
np.testing.assert_array_almost_equal(preds_tgt,
preds_ref,
decimal=self.featurizerCompareDigitsExact)
示例3: test_validate_keras_resnet
# 需要導入模塊: from keras import applications [as 別名]
# 或者: from keras.applications import ResNet50 [as 別名]
def test_validate_keras_resnet(self):
input_tensor = Input(shape=(224, 224, 3))
model = ResNet50(weights="imagenet", input_tensor=input_tensor)
file_name = "keras"+model.name+".pmml"
pmml_obj = KerasToPmml(model,dataSet="image",predictedClasses=[str(i) for i in range(1000)])
pmml_obj.export(open(file_name,'w'),0)
self.assertEqual(self.schema.is_valid(file_name), True)
示例4: build_transfer_ResNet_to_LSTM
# 需要導入模塊: from keras import applications [as 別名]
# 或者: from keras.applications import ResNet50 [as 別名]
def build_transfer_ResNet_to_LSTM(self, input_shape, optimizer=Adam(lr=1e-6, decay=1e-5)):
input_sequences = Input(shape=input_shape)
backbone_model = ResNet50(weights='imagenet')
backbone_model = Model(inputs=backbone_model.input, outputs=backbone_model.get_layer(index=-2).output)
feature_sequences = TimeDistributed(backbone_model)(input_sequences)
lstm_out = LSTM(20, return_sequences=False)(feature_sequences)
prediction = Dense(2, activation='softmax', kernel_initializer='ones')(lstm_out)
self.model = Model(inputs=input_sequences, outputs=prediction)
self.model.compile(loss='categorical_crossentropy', optimizer=optimizer)
示例5: test_resnet50
# 需要導入模塊: from keras import applications [as 別名]
# 或者: from keras.applications import ResNet50 [as 別名]
def test_resnet50():
app = applications.ResNet50
last_dim = 2048
_test_application_basic(app)
_test_application_notop(app, last_dim)
_test_application_variable_input_channels(app, last_dim)
_test_app_pooling(app, last_dim)
示例6: build_model
# 需要導入模塊: from keras import applications [as 別名]
# 或者: from keras.applications import ResNet50 [as 別名]
def build_model():
import keras.applications as kapp
from keras.backend import floatx
from keras.layers import Input
inputLayer = Input(shape=(224, 224, 3), dtype=floatx())
return kapp.ResNet50(input_tensor=inputLayer)
示例7: load_model
# 需要導入模塊: from keras import applications [as 別名]
# 或者: from keras.applications import ResNet50 [as 別名]
def load_model():
# load the pre-trained Keras model (here we are using a model
# pre-trained on ImageNet and provided by Keras, but you can
# substitute in your own networks just as easily)
global model
model = ResNet50(weights="imagenet")
示例8: load_encoding_model
# 需要導入模塊: from keras import applications [as 別名]
# 或者: from keras.applications import ResNet50 [as 別名]
def load_encoding_model():
model = ResNet50(weights='imagenet', include_top=False, input_shape = (224, 224, 3))
return model
示例9: get_imagenet_architecture
# 需要導入模塊: from keras import applications [as 別名]
# 或者: from keras.applications import ResNet50 [as 別名]
def get_imagenet_architecture(architecture, variant, size, alpha, output_layer, include_top=False, weights='imagenet'):
from keras import applications, Model
if include_top:
assert output_layer == 'last'
if size == 'auto':
size = get_image_size(architecture, variant, size)
shape = (size, size, 3)
if architecture == 'densenet':
if variant == 'auto':
variant = 'densenet-121'
if variant == 'densenet-121':
model = applications.DenseNet121(weights=weights, include_top=include_top, input_shape=shape)
elif variant == 'densenet-169':
model = applications.DenseNet169(weights=weights, include_top=include_top, input_shape=shape)
elif variant == 'densenet-201':
model = applications.DenseNet201(weights=weights, include_top=include_top, input_shape=shape)
elif architecture == 'inception-resnet-v2':
model = applications.InceptionResNetV2(weights=weights, include_top=include_top, input_shape=shape)
elif architecture == 'mobilenet':
model = applications.MobileNet(weights=weights, include_top=include_top, input_shape=shape, alpha=alpha)
elif architecture == 'mobilenet-v2':
model = applications.MobileNetV2(weights=weights, include_top=include_top, input_shape=shape, alpha=alpha)
elif architecture == 'nasnet':
if variant == 'auto':
variant = 'large'
if variant == 'large':
model = applications.NASNetLarge(weights=weights, include_top=include_top, input_shape=shape)
else:
model = applications.NASNetMobile(weights=weights, include_top=include_top, input_shape=shape)
elif architecture == 'resnet-50':
model = applications.ResNet50(weights=weights, include_top=include_top, input_shape=shape)
elif architecture == 'vgg-16':
model = applications.VGG16(weights=weights, include_top=include_top, input_shape=shape)
elif architecture == 'vgg-19':
model = applications.VGG19(weights=weights, include_top=include_top, input_shape=shape)
elif architecture == 'xception':
model = applications.Xception(weights=weights, include_top=include_top, input_shape=shape)
elif architecture == 'inception-v3':
model = applications.InceptionV3(weights=weights, include_top=include_top, input_shape=shape)
if output_layer != 'last':
try:
if isinstance(output_layer, int):
layer = model.layers[output_layer]
else:
layer = model.get_layer(output_layer)
except Exception:
raise VergeMLError('layer not found: {}'.format(output_layer))
model = Model(inputs=model.input, outputs=layer.output)
return model
示例10: SDPN
# 需要導入模塊: from keras import applications [as 別名]
# 或者: from keras.applications import ResNet50 [as 別名]
def SDPN(summary=True):
"""
Create and return Semantic-aware Dense Prediction Network.
Parameters
----------
summary : bool
If True, network summary is printed to stout.
Returns
-------
model : keras Model
Model of SDPN
"""
input_coords = Input(shape=(4,))
input_crop = Input(shape=(3, 224, 224))
# extract feature from image crop
resnet = ResNet50(include_top=False, weights='imagenet')
for layer in resnet.layers: # set resnet as non-trainable
layer.trainable = False
crop_encoded = resnet(input_crop) # shape of `crop_encoded` is 2018x1x1
crop_encoded = Reshape(target_shape=(2048,))(crop_encoded)
# encode input coordinates
h = Dense(256, activation='relu')(input_coords)
h = Dropout(p=0.25)(h)
h = Dense(256, activation='relu')(h)
h = Dropout(p=0.25)(h)
h = Dense(256, activation='relu')(h)
# merge feature vectors from crop and coords
merged = merge([crop_encoded, h], mode='concat')
# decoding into output coordinates
h = Dense(1024, activation='relu')(merged)
h = Dropout(p=0.25)(h)
h = Dense(1024, activation='relu')(h)
h = Dropout(p=0.25)(h)
h = Dense(512, activation='relu')(h)
h = Dropout(p=0.25)(h)
h = Dense(256, activation='relu')(h)
h = Dropout(p=0.25)(h)
h = Dense(128, activation='relu')(h)
h = Dropout(p=0.25)(h)
output_coords = Dense(4, activation='tanh')(h)
model = Model(input=[input_coords, input_crop], output=output_coords)
if summary:
model.summary()
return model