當前位置: 首頁>>代碼示例>>Python>>正文


Python applications.ResNet50方法代碼示例

本文整理匯總了Python中keras.applications.ResNet50方法的典型用法代碼示例。如果您正苦於以下問題:Python applications.ResNet50方法的具體用法?Python applications.ResNet50怎麽用?Python applications.ResNet50使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在keras.applications的用法示例。


在下文中一共展示了applications.ResNet50方法的10個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: set_dataset

# 需要導入模塊: from keras import applications [as 別名]
# 或者: from keras.applications import ResNet50 [as 別名]
def set_dataset(image_path, label_path, feature_extract_option=0, feature_path='/mit_resnet_train.pickle'):

    df = pd.read_csv(label_path, header=0, usecols=[3, 4])

    target_data = np.zeros([len(df['no_event'].tolist()), 2])
    target_data[:, 0] = df['no_event'].tolist()
    target_data[:, 1] = df['critical'].tolist()

    data = DataSet()
    data.risk_one_hot = target_data

    if feature_extract_option == 0:
        backbone_model = ResNet50(weights='imagenet')
        backbone_model = Model(inputs=backbone_model.input, outputs=backbone_model.get_layer(index=-2).output)
        data.model = backbone_model
        data.extract_features(image_path, option='fixed frame amount', number_of_frames=190)
    elif feature_extract_option == 1:
        data.video_features = DataSet.loader(image_path + feature_path)

    return data 
開發者ID:Ekim-Yurtsever,項目名稱:DeepTL-Lane-Change-Classification,代碼行數:22,代碼來源:train.py

示例2: test_bare_keras_module

# 需要導入模塊: from keras import applications [as 別名]
# 或者: from keras.applications import ResNet50 [as 別名]
def test_bare_keras_module(self):
        """ Keras GraphFunctions should give the same result as standard Keras models """
        img_fpaths = glob(os.path.join(_getSampleJPEGDir(), '*.jpg'))

        for model_gen, preproc_fn, target_size in [(InceptionV3, iv3.preprocess_input, model_sizes['InceptionV3']),
                                      (Xception, xcpt.preprocess_input, model_sizes['Xception']),
                                      (ResNet50, rsnt.preprocess_input, model_sizes['ResNet50'])]:

            keras_model = model_gen(weights="imagenet")
            _preproc_img_list = []
            for fpath in img_fpaths:
                img = load_img(fpath, target_size=target_size)
                # WARNING: must apply expand dimensions first, or ResNet50 preprocessor fails
                img_arr = np.expand_dims(img_to_array(img), axis=0)
                _preproc_img_list.append(preproc_fn(img_arr))

            imgs_input = np.vstack(_preproc_img_list)

            preds_ref = keras_model.predict(imgs_input)

            gfn_bare_keras = GraphFunction.fromKeras(keras_model)

            with IsolatedSession(using_keras=True) as issn:
                K.set_learning_phase(0)
                feeds, fetches = issn.importGraphFunction(gfn_bare_keras)
                preds_tgt = issn.run(fetches[0], {feeds[0]: imgs_input})

            np.testing.assert_array_almost_equal(preds_tgt,
                                                 preds_ref,
                                                 decimal=self.featurizerCompareDigitsExact) 
開發者ID:databricks,項目名稱:spark-deep-learning,代碼行數:32,代碼來源:test_pieces.py

示例3: test_validate_keras_resnet

# 需要導入模塊: from keras import applications [as 別名]
# 或者: from keras.applications import ResNet50 [as 別名]
def test_validate_keras_resnet(self):
        input_tensor = Input(shape=(224, 224, 3))
        model = ResNet50(weights="imagenet", input_tensor=input_tensor)
        file_name = "keras"+model.name+".pmml"
        pmml_obj = KerasToPmml(model,dataSet="image",predictedClasses=[str(i) for i in range(1000)])
        pmml_obj.export(open(file_name,'w'),0)
        self.assertEqual(self.schema.is_valid(file_name), True) 
開發者ID:nyoka-pmml,項目名稱:nyoka,代碼行數:9,代碼來源:_validateSchema.py

示例4: build_transfer_ResNet_to_LSTM

# 需要導入模塊: from keras import applications [as 別名]
# 或者: from keras.applications import ResNet50 [as 別名]
def build_transfer_ResNet_to_LSTM(self, input_shape, optimizer=Adam(lr=1e-6, decay=1e-5)):

        input_sequences = Input(shape=input_shape)

        backbone_model = ResNet50(weights='imagenet')
        backbone_model = Model(inputs=backbone_model.input, outputs=backbone_model.get_layer(index=-2).output)

        feature_sequences = TimeDistributed(backbone_model)(input_sequences)

        lstm_out = LSTM(20, return_sequences=False)(feature_sequences)
        prediction = Dense(2, activation='softmax', kernel_initializer='ones')(lstm_out)

        self.model = Model(inputs=input_sequences, outputs=prediction)
        self.model.compile(loss='categorical_crossentropy', optimizer=optimizer) 
開發者ID:Ekim-Yurtsever,項目名稱:DeepTL-Lane-Change-Classification,代碼行數:16,代碼來源:models.py

示例5: test_resnet50

# 需要導入模塊: from keras import applications [as 別名]
# 或者: from keras.applications import ResNet50 [as 別名]
def test_resnet50():
    app = applications.ResNet50
    last_dim = 2048
    _test_application_basic(app)
    _test_application_notop(app, last_dim)
    _test_application_variable_input_channels(app, last_dim)
    _test_app_pooling(app, last_dim) 
開發者ID:hello-sea,項目名稱:DeepLearning_Wavelet-LSTM,代碼行數:9,代碼來源:applications_test.py

示例6: build_model

# 需要導入模塊: from keras import applications [as 別名]
# 或者: from keras.applications import ResNet50 [as 別名]
def build_model():
    import keras.applications as kapp
    from keras.backend import floatx
    from keras.layers import Input
    inputLayer = Input(shape=(224, 224, 3), dtype=floatx())
    return kapp.ResNet50(input_tensor=inputLayer) 
開發者ID:plaidml,項目名稱:plaidbench,代碼行數:8,代碼來源:resnet50.py

示例7: load_model

# 需要導入模塊: from keras import applications [as 別名]
# 或者: from keras.applications import ResNet50 [as 別名]
def load_model():
	# load the pre-trained Keras model (here we are using a model
	# pre-trained on ImageNet and provided by Keras, but you can
	# substitute in your own networks just as easily)
	global model
	model = ResNet50(weights="imagenet") 
開發者ID:jrosebr1,項目名稱:simple-keras-rest-api,代碼行數:8,代碼來源:run_keras_server.py

示例8: load_encoding_model

# 需要導入模塊: from keras import applications [as 別名]
# 或者: from keras.applications import ResNet50 [as 別名]
def load_encoding_model():
	model = ResNet50(weights='imagenet', include_top=False, input_shape = (224, 224, 3))
	return model 
開發者ID:vsmolyakov,項目名稱:cv,代碼行數:5,代碼來源:prepare_dataset.py

示例9: get_imagenet_architecture

# 需要導入模塊: from keras import applications [as 別名]
# 或者: from keras.applications import ResNet50 [as 別名]
def get_imagenet_architecture(architecture, variant, size, alpha, output_layer, include_top=False, weights='imagenet'):
    from keras import applications, Model

    if include_top:
        assert output_layer == 'last'

    if size == 'auto':
        size = get_image_size(architecture, variant, size)

    shape = (size, size, 3)

    if architecture == 'densenet':
        if variant == 'auto':
            variant = 'densenet-121'
        if variant == 'densenet-121':
            model = applications.DenseNet121(weights=weights, include_top=include_top, input_shape=shape)
        elif variant == 'densenet-169':
            model = applications.DenseNet169(weights=weights, include_top=include_top, input_shape=shape)
        elif variant == 'densenet-201':
            model = applications.DenseNet201(weights=weights, include_top=include_top, input_shape=shape)
    elif architecture == 'inception-resnet-v2':
        model = applications.InceptionResNetV2(weights=weights, include_top=include_top, input_shape=shape)
    elif architecture == 'mobilenet':
        model = applications.MobileNet(weights=weights, include_top=include_top, input_shape=shape, alpha=alpha)
    elif architecture == 'mobilenet-v2':
        model = applications.MobileNetV2(weights=weights, include_top=include_top, input_shape=shape, alpha=alpha)
    elif architecture == 'nasnet':
        if variant == 'auto':
            variant = 'large'
        if variant == 'large':
            model = applications.NASNetLarge(weights=weights, include_top=include_top, input_shape=shape)
        else:
            model = applications.NASNetMobile(weights=weights, include_top=include_top, input_shape=shape)
    elif architecture == 'resnet-50':
        model = applications.ResNet50(weights=weights, include_top=include_top, input_shape=shape)
    elif architecture == 'vgg-16':
        model = applications.VGG16(weights=weights, include_top=include_top, input_shape=shape)
    elif architecture == 'vgg-19':
        model = applications.VGG19(weights=weights, include_top=include_top, input_shape=shape)
    elif architecture == 'xception':
        model = applications.Xception(weights=weights, include_top=include_top, input_shape=shape)
    elif architecture == 'inception-v3':
        model = applications.InceptionV3(weights=weights, include_top=include_top, input_shape=shape)

    if output_layer != 'last':
        try:
            if isinstance(output_layer, int):
                layer = model.layers[output_layer]
            else:
                layer = model.get_layer(output_layer)
        except Exception:
            raise VergeMLError('layer not found: {}'.format(output_layer))
        model = Model(inputs=model.input, outputs=layer.output)

    return model 
開發者ID:mme,項目名稱:vergeml,代碼行數:57,代碼來源:features.py

示例10: SDPN

# 需要導入模塊: from keras import applications [as 別名]
# 或者: from keras.applications import ResNet50 [as 別名]
def SDPN(summary=True):
    """
    Create and return Semantic-aware Dense Prediction Network.

    Parameters
    ----------
    summary : bool
        If True, network summary is printed to stout.

    Returns
    -------
    model : keras Model
        Model of SDPN

    """
    input_coords = Input(shape=(4,))
    input_crop = Input(shape=(3, 224, 224))

    # extract feature from image crop
    resnet = ResNet50(include_top=False, weights='imagenet')
    for layer in resnet.layers:  # set resnet as non-trainable
        layer.trainable = False

    crop_encoded = resnet(input_crop)  # shape of `crop_encoded` is 2018x1x1
    crop_encoded = Reshape(target_shape=(2048,))(crop_encoded)

    # encode input coordinates
    h = Dense(256, activation='relu')(input_coords)
    h = Dropout(p=0.25)(h)
    h = Dense(256, activation='relu')(h)
    h = Dropout(p=0.25)(h)
    h = Dense(256, activation='relu')(h)

    # merge feature vectors from crop and coords
    merged = merge([crop_encoded, h], mode='concat')

    # decoding into output coordinates
    h = Dense(1024, activation='relu')(merged)
    h = Dropout(p=0.25)(h)
    h = Dense(1024, activation='relu')(h)
    h = Dropout(p=0.25)(h)
    h = Dense(512, activation='relu')(h)
    h = Dropout(p=0.25)(h)
    h = Dense(256, activation='relu')(h)
    h = Dropout(p=0.25)(h)
    h = Dense(128, activation='relu')(h)
    h = Dropout(p=0.25)(h)

    output_coords = Dense(4, activation='tanh')(h)

    model = Model(input=[input_coords, input_crop], output=output_coords)

    if summary:
        model.summary()

    return model 
開發者ID:ndrplz,項目名稱:surround_vehicles_awareness,代碼行數:58,代碼來源:model.py


注:本文中的keras.applications.ResNet50方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。