本文整理匯總了Python中keras.activations.linear方法的典型用法代碼示例。如果您正苦於以下問題:Python activations.linear方法的具體用法?Python activations.linear怎麽用?Python activations.linear使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類keras.activations
的用法示例。
在下文中一共展示了activations.linear方法的7個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: keras_digits_vis
# 需要導入模塊: from keras import activations [as 別名]
# 或者: from keras.activations import linear [as 別名]
def keras_digits_vis(model, X_test, y_test):
layer_idx = utils.find_layer_idx(model, 'preds')
model.layers[layer_idx].activation = activations.linear
model = utils.apply_modifications(model)
for class_idx in np.arange(10):
indices = np.where(y_test[:, class_idx] == 1.)[0]
idx = indices[0]
f, ax = plt.subplots(1, 4)
ax[0].imshow(X_test[idx][..., 0])
for i, modifier in enumerate([None, 'guided', 'relu']):
heatmap = visualize_saliency(model, layer_idx, filter_indices=class_idx,
seed_input=X_test[idx], backprop_modifier=modifier)
if modifier is None:
modifier = 'vanilla'
ax[i+1].set_title(modifier)
ax[i+1].imshow(heatmap)
plt.imshow(heatmap)
plt.show()
示例2: test_get_fn
# 需要導入模塊: from keras import activations [as 別名]
# 或者: from keras.activations import linear [as 別名]
def test_get_fn():
"""Activations has a convenience "get" function. All paths of this
function are tested here, although the behaviour in some instances
seems potentially surprising (e.g. situation 3)
"""
# 1. Default returns linear
a = activations.get(None)
assert a == activations.linear
# 2. Passing in a layer raises a warning
layer = Dense(32)
with pytest.warns(UserWarning):
a = activations.get(layer)
# 3. Callables return themselves for some reason
a = activations.get(lambda x: 5)
assert a(None) == 5
# 4. Anything else is not a valid argument
with pytest.raises(ValueError):
a = activations.get(6)
示例3: test_linear
# 需要導入模塊: from keras import activations [as 別名]
# 或者: from keras.activations import linear [as 別名]
def test_linear():
'''
This function does no input validation, it just returns the thing
that was passed in.
'''
from keras.activations import linear as l
xs = [1, 5, True, None, 'foo']
for x in xs:
assert x == l(x)
示例4: test_serialization
# 需要導入模塊: from keras import activations [as 別名]
# 或者: from keras.activations import linear [as 別名]
def test_serialization():
all_activations = ['softmax', 'relu', 'elu', 'tanh',
'sigmoid', 'hard_sigmoid', 'linear',
'softplus', 'softsign', 'selu']
for name in all_activations:
fn = activations.get(name)
ref_fn = getattr(activations, name)
assert fn == ref_fn
config = activations.serialize(fn)
fn = activations.deserialize(config)
assert fn == ref_fn
示例5: test_linear
# 需要導入模塊: from keras import activations [as 別名]
# 或者: from keras.activations import linear [as 別名]
def test_linear():
xs = [1, 5, True, None]
for x in xs:
assert(x == activations.linear(x))
示例6: compute_similarity
# 需要導入模塊: from keras import activations [as 別名]
# 或者: from keras.activations import linear [as 別名]
def compute_similarity(self, repeated_context_vectors, repeated_query_vectors):
element_wise_multiply = repeated_context_vectors * repeated_query_vectors
concatenated_tensor = K.concatenate(
[repeated_context_vectors, repeated_query_vectors, element_wise_multiply], axis=-1)
dot_product = K.squeeze(K.dot(concatenated_tensor, self.kernel), axis=-1)
return linear(dot_product + self.bias)
示例7: Generator
# 需要導入模塊: from keras import activations [as 別名]
# 或者: from keras.activations import linear [as 別名]
def Generator(
num_channels =1,
resolution =32,
label_size =0,
fmap_base =4096,
fmap_decay =1.0,
fmap_max =256,
latent_size =None,
normalize_latents =True,
use_wscale =True,
use_pixelnorm =True,
use_leakyrelu =True,
use_batchnorm =False,
tanh_at_end =None,
**kwargs):
R = int(np.log2(resolution))
assert resolution == 2 ** R and resolution >= 4
cur_lod = K.variable(np.float32(0.0), dtype='float32', name='cur_lod')
def numf(stage): return min(int(fmap_base / (2.0 ** (stage * fmap_decay))), fmap_max)
if latent_size is None:
latent_size = numf(0)
(act, act_init) = (lrelu, lrelu_init) if use_leakyrelu else (relu, relu_init)
inputs = [Input(shape=[latent_size], name='Glatents')]
net = inputs[-1]
#print("DEEEEEEEE")
if normalize_latents:
net = PixelNormLayer(name='Gnorm')(net)
if label_size:
inputs += [Input(shape=[label_size], name='Glabels')]
net = Concatenate(name='G1na')([net, inputs[-1]])
net = Reshape((1, 1,K.int_shape(net)[1]), name='G1nb')(net)
net = G_convblock(net, numf(1), 4, act, act_init, pad='full', use_wscale=use_wscale,
use_batchnorm=use_batchnorm, use_pixelnorm=use_pixelnorm, name='G1a')
net = G_convblock(net, numf(1), 3, act, act_init, pad=1, use_wscale=use_wscale,
use_batchnorm=use_batchnorm, use_pixelnorm=use_pixelnorm, name='G1b')
lods = [net]
for I in range(2, R):
net = UpSampling2D(2, name='G%dup' % I)(net)
net = G_convblock(net, numf(I), 3, act, act_init, pad=1, use_wscale=use_wscale,
use_batchnorm=use_batchnorm, use_pixelnorm=use_pixelnorm, name='G%da' % I)
net = G_convblock(net, numf(I), 3, act, act_init, pad=1, use_wscale=use_wscale,
use_batchnorm=use_batchnorm, use_pixelnorm=use_pixelnorm, name='G%db' % I)
lods += [net]
lods = [NINblock(l, num_channels, linear, linear_init, use_wscale=use_wscale,
name='Glod%d' % i) for i, l in enumerate(reversed(lods))]
output = LODSelectLayer(cur_lod, name='Glod')(lods)
if tanh_at_end is not None:
output = Activation('tanh', name='Gtanh')(output)
if tanh_at_end != 1.0:
output = Lambda(lambda x: x * tanh_at_end, name='Gtanhs')
model = Model(inputs=inputs, outputs=[output])
model.cur_lod = cur_lod
return model