當前位置: 首頁>>代碼示例>>Python>>正文


Python activations.linear方法代碼示例

本文整理匯總了Python中keras.activations.linear方法的典型用法代碼示例。如果您正苦於以下問題:Python activations.linear方法的具體用法?Python activations.linear怎麽用?Python activations.linear使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在keras.activations的用法示例。


在下文中一共展示了activations.linear方法的7個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: keras_digits_vis

# 需要導入模塊: from keras import activations [as 別名]
# 或者: from keras.activations import linear [as 別名]
def keras_digits_vis(model, X_test, y_test):
    
    layer_idx = utils.find_layer_idx(model, 'preds')
    model.layers[layer_idx].activation = activations.linear
    model = utils.apply_modifications(model)

    for class_idx in np.arange(10):    
        indices = np.where(y_test[:, class_idx] == 1.)[0]
        idx = indices[0]

        f, ax = plt.subplots(1, 4)
        ax[0].imshow(X_test[idx][..., 0])
        
        for i, modifier in enumerate([None, 'guided', 'relu']):
            heatmap = visualize_saliency(model, layer_idx, filter_indices=class_idx, 
                                        seed_input=X_test[idx], backprop_modifier=modifier)
            if modifier is None:
                modifier = 'vanilla'
            ax[i+1].set_title(modifier)    
            ax[i+1].imshow(heatmap)
    plt.imshow(heatmap)
    plt.show() 
開發者ID:drschilling,項目名稱:keras-mnist-workshop,代碼行數:24,代碼來源:keras_mnist_vis.py

示例2: test_get_fn

# 需要導入模塊: from keras import activations [as 別名]
# 或者: from keras.activations import linear [as 別名]
def test_get_fn():
    """Activations has a convenience "get" function. All paths of this
    function are tested here, although the behaviour in some instances
    seems potentially surprising (e.g. situation 3)
    """

    # 1. Default returns linear
    a = activations.get(None)
    assert a == activations.linear

    # 2. Passing in a layer raises a warning
    layer = Dense(32)
    with pytest.warns(UserWarning):
        a = activations.get(layer)

    # 3. Callables return themselves for some reason
    a = activations.get(lambda x: 5)
    assert a(None) == 5

    # 4. Anything else is not a valid argument
    with pytest.raises(ValueError):
        a = activations.get(6) 
開發者ID:hello-sea,項目名稱:DeepLearning_Wavelet-LSTM,代碼行數:24,代碼來源:activations_test.py

示例3: test_linear

# 需要導入模塊: from keras import activations [as 別名]
# 或者: from keras.activations import linear [as 別名]
def test_linear():
    '''
    This function does no input validation, it just returns the thing
    that was passed in.
    '''

    from keras.activations import linear as l

    xs = [1, 5, True, None, 'foo']

    for x in xs:
        assert x == l(x) 
開發者ID:lllcho,項目名稱:CAPTCHA-breaking,代碼行數:14,代碼來源:test_activations.py

示例4: test_serialization

# 需要導入模塊: from keras import activations [as 別名]
# 或者: from keras.activations import linear [as 別名]
def test_serialization():
    all_activations = ['softmax', 'relu', 'elu', 'tanh',
                       'sigmoid', 'hard_sigmoid', 'linear',
                       'softplus', 'softsign', 'selu']
    for name in all_activations:
        fn = activations.get(name)
        ref_fn = getattr(activations, name)
        assert fn == ref_fn
        config = activations.serialize(fn)
        fn = activations.deserialize(config)
        assert fn == ref_fn 
開發者ID:hello-sea,項目名稱:DeepLearning_Wavelet-LSTM,代碼行數:13,代碼來源:activations_test.py

示例5: test_linear

# 需要導入模塊: from keras import activations [as 別名]
# 或者: from keras.activations import linear [as 別名]
def test_linear():
    xs = [1, 5, True, None]
    for x in xs:
        assert(x == activations.linear(x)) 
開發者ID:hello-sea,項目名稱:DeepLearning_Wavelet-LSTM,代碼行數:6,代碼來源:activations_test.py

示例6: compute_similarity

# 需要導入模塊: from keras import activations [as 別名]
# 或者: from keras.activations import linear [as 別名]
def compute_similarity(self, repeated_context_vectors, repeated_query_vectors):
        element_wise_multiply = repeated_context_vectors * repeated_query_vectors
        concatenated_tensor = K.concatenate(
            [repeated_context_vectors, repeated_query_vectors, element_wise_multiply], axis=-1)
        dot_product = K.squeeze(K.dot(concatenated_tensor, self.kernel), axis=-1)
        return linear(dot_product + self.bias) 
開發者ID:ParikhKadam,項目名稱:bidaf-keras,代碼行數:8,代碼來源:similarity_layer.py

示例7: Generator

# 需要導入模塊: from keras import activations [as 別名]
# 或者: from keras.activations import linear [as 別名]
def Generator(
    num_channels        =1,
    resolution          =32,
    label_size          =0,
    fmap_base           =4096,
    fmap_decay          =1.0,
    fmap_max            =256,
    latent_size         =None,
    normalize_latents   =True,
    use_wscale          =True,
    use_pixelnorm       =True,
    use_leakyrelu       =True,
    use_batchnorm       =False,
    tanh_at_end         =None,
    **kwargs):
    R = int(np.log2(resolution))
    assert resolution == 2 ** R and resolution >= 4
    cur_lod = K.variable(np.float32(0.0), dtype='float32', name='cur_lod')

    def numf(stage): return min(int(fmap_base / (2.0 ** (stage * fmap_decay))), fmap_max)
    if latent_size is None:
        latent_size = numf(0)
    (act, act_init) = (lrelu, lrelu_init) if use_leakyrelu else (relu, relu_init)

    inputs = [Input(shape=[latent_size], name='Glatents')]
    net = inputs[-1]

    #print("DEEEEEEEE")

    if normalize_latents:
        net = PixelNormLayer(name='Gnorm')(net)
    if label_size:
        inputs += [Input(shape=[label_size], name='Glabels')]
        net = Concatenate(name='G1na')([net, inputs[-1]])
    net = Reshape((1, 1,K.int_shape(net)[1]), name='G1nb')(net)

    net = G_convblock(net, numf(1), 4, act, act_init, pad='full', use_wscale=use_wscale,
                      use_batchnorm=use_batchnorm, use_pixelnorm=use_pixelnorm, name='G1a')
    net = G_convblock(net, numf(1), 3, act, act_init, pad=1, use_wscale=use_wscale,
                      use_batchnorm=use_batchnorm, use_pixelnorm=use_pixelnorm, name='G1b')
    lods = [net]
    for I in range(2, R):
        net = UpSampling2D(2, name='G%dup' % I)(net)
        net = G_convblock(net, numf(I), 3, act, act_init, pad=1, use_wscale=use_wscale,
                          use_batchnorm=use_batchnorm, use_pixelnorm=use_pixelnorm, name='G%da' % I)
        net = G_convblock(net, numf(I), 3, act, act_init, pad=1, use_wscale=use_wscale,
                          use_batchnorm=use_batchnorm, use_pixelnorm=use_pixelnorm, name='G%db' % I)
        lods += [net]

    lods = [NINblock(l, num_channels, linear, linear_init, use_wscale=use_wscale,
                     name='Glod%d' % i) for i, l in enumerate(reversed(lods))]
    output = LODSelectLayer(cur_lod, name='Glod')(lods)
    if tanh_at_end is not None:
        output = Activation('tanh', name='Gtanh')(output)
        if tanh_at_end != 1.0:
            output = Lambda(lambda x: x * tanh_at_end, name='Gtanhs')

    model = Model(inputs=inputs, outputs=[output])
    model.cur_lod = cur_lod
    return model 
開發者ID:MSC-BUAA,項目名稱:Keras-progressive_growing_of_gans,代碼行數:62,代碼來源:model.py


注:本文中的keras.activations.linear方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。