本文整理匯總了Python中keras.activations.get方法的典型用法代碼示例。如果您正苦於以下問題:Python activations.get方法的具體用法?Python activations.get怎麽用?Python activations.get使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類keras.activations
的用法示例。
在下文中一共展示了activations.get方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: __init__
# 需要導入模塊: from keras import activations [as 別名]
# 或者: from keras.activations import get [as 別名]
def __init__(self, output_dim, L,
init='glorot_uniform', inner_init='orthogonal',
activation='tanh', inner_activation='hard_sigmoid',
W_regularizer=None, U_regularizer=None, b_regularizer=None,
dropout_W=0., dropout_U=0., **kwargs):
self.output_dim = output_dim
self.init = initializations.get(init)
self.inner_init = initializations.get(inner_init)
self.activation = activations.get(activation)
self.inner_activation = activations.get(inner_activation)
self.W_regularizer = regularizers.get(W_regularizer)
self.U_regularizer = regularizers.get(U_regularizer)
self.b_regularizer = regularizers.get(b_regularizer)
self.dropout_W, self.dropout_U = dropout_W, dropout_U
self.L = L
if self.dropout_W or self.dropout_U:
self.uses_learning_phase = True
super(RHN, self).__init__(**kwargs)
示例2: __init__
# 需要導入模塊: from keras import activations [as 別名]
# 或者: from keras.activations import get [as 別名]
def __init__(self,
filters,
pooling='sum',
kernel_initializer='glorot_uniform',
kernel_regularizer=None,
bias_initializer='zeros',
activation=None,
**kwargs):
self.activation = activations.get(activation)
self.kernel_initializer = initializers.get(kernel_initializer)
self.bias_initializer = initializers.get(bias_initializer)
self.kernel_regularizer = regularizers.get(kernel_regularizer)
self.filters = filters
self.pooling = pooling
super(GraphConvS, self).__init__(**kwargs)
示例3: __init__
# 需要導入模塊: from keras import activations [as 別名]
# 或者: from keras.activations import get [as 別名]
def __init__(self, feature_num,
feature_size,
embedding_size,
output_dim=1,
activation=None,
**kwargs):
if 'input_shape' not in kwargs and 'input_dim' in kwargs:
kwargs['input_shape'] = (kwargs.pop('input_dim'),)
super(FMLayer, self).__init__(**kwargs)
self.output_dim = output_dim
self.embedding_size = embedding_size
self.activation = activations.get(activation)
self.input_spec = InputSpec(ndim=2)
self.feature_num = feature_num
self.feature_size = feature_size
示例4: __init__
# 需要導入模塊: from keras import activations [as 別名]
# 或者: from keras.activations import get [as 別名]
def __init__(self, output_dim,
init='glorot_uniform', inner_init='orthogonal',
forget_bias_init='one', activation='tanh',
inner_activation='hard_sigmoid',
W_regularizer=None, U_regularizer=None, b_regularizer=None,
dropout_W=0., dropout_U=0., **kwargs):
self.output_dim = output_dim
self.init = initializations.get(init)
self.inner_init = initializations.get(inner_init)
self.forget_bias_init = initializations.get(forget_bias_init)
self.activation = activations.get(activation)
self.inner_activation = activations.get(inner_activation)
self.W_regularizer = regularizers.get(W_regularizer)
self.U_regularizer = regularizers.get(U_regularizer)
self.b_regularizer = regularizers.get(b_regularizer)
self.dropout_W, self.dropout_U = dropout_W, dropout_U
if self.dropout_W or self.dropout_U:
self.uses_learning_phase = True
super(DecoderVaeLSTM, self).__init__(**kwargs)
示例5: __init__
# 需要導入模塊: from keras import activations [as 別名]
# 或者: from keras.activations import get [as 別名]
def __init__(self, output_dim, memory_dim=128, memory_size=20,
controller_output_dim=100, location_shift_range=1,
num_read_head=1, num_write_head=1,
init='glorot_uniform', inner_init='orthogonal',
forget_bias_init='one', activation='tanh',
inner_activation='hard_sigmoid',
W_regularizer=None, U_regularizer=None, R_regularizer=None,
b_regularizer=None, W_y_regularizer=None,
W_xi_regularizer=None, W_r_regularizer=None,
dropout_W=0., dropout_U=0., **kwargs):
self.output_dim = output_dim
self.init = initializations.get(init)
self.inner_init = initializations.get(inner_init)
self.forget_bias_init = initializations.get(forget_bias_init)
self.activation = activations.get(activation)
self.inner_activation = activations.get(inner_activation)
self.W_regularizer = regularizers.get(W_regularizer)
self.U_regularizer = regularizers.get(U_regularizer)
self.b_regularizer = regularizers.get(b_regularizer)
self.dropout_W, self.dropout_U = dropout_W, dropout_U
if self.dropout_W or self.dropout_U:
self.uses_learning_phase = True
super(NTM, self).__init__(**kwargs)
示例6: __init__
# 需要導入模塊: from keras import activations [as 別名]
# 或者: from keras.activations import get [as 別名]
def __init__(self, output_dim, inner_dim, depth = 2, init_output='uniform',
activation_output='softmax', init_inner='identity',
activation_inner='linear', scale_output=0.01, padding=False, **kwargs):
if depth < 1:
quit('Cannot use GraphFP with depth zero')
self.init_output = initializations.get(init_output)
self.activation_output = activations.get(activation_output)
self.init_inner = initializations.get(init_inner)
self.activation_inner = activations.get(activation_inner)
self.output_dim = output_dim
self.inner_dim = inner_dim
self.depth = depth
self.scale_output = scale_output
self.padding = padding
self.initial_weights = None
self.input_dim = 4 # each entry is a 3D N_atom x N_atom x N_feature tensor
if self.input_dim:
kwargs['input_shape'] = (None, None, None,) # 3D tensor for each input
#self.input = K.placeholder(ndim = 4)
super(GraphFP, self).__init__(**kwargs)
示例7: __init__
# 需要導入模塊: from keras import activations [as 別名]
# 或者: from keras.activations import get [as 別名]
def __init__(
self,
heads,
head_size,
key_size=None,
use_bias=True,
attention_scale=True,
kernel_initializer='glorot_uniform',
**kwargs
):
super(MultiHeadAttention, self).__init__(**kwargs)
self.heads = heads
self.head_size = head_size
self.out_dim = heads * head_size
self.key_size = key_size or head_size
self.use_bias = use_bias
self.attention_scale = attention_scale
self.kernel_initializer = initializers.get(kernel_initializer)
示例8: evaluate
# 需要導入模塊: from keras import activations [as 別名]
# 或者: from keras.activations import get [as 別名]
def evaluate(self, inputs, fn_inverse=None, fn_plot=None):
try:
X, y = inputs
inputs = X
except:
X, conditions, y = inputs
inputs = [X, conditions]
y_hat = self.predict(inputs)
if fn_inverse is not None:
y_hat = fn_inverse(y_hat)
y = fn_inverse(y)
if fn_plot is not None:
fn_plot([y, y_hat])
results = []
for m in self.model.metrics:
if isinstance(m, str):
results.append(K.eval(K.mean(get(m)(y, y_hat))))
else:
results.append(K.eval(K.mean(m(y, y_hat))))
return results
示例9: __init__
# 需要導入模塊: from keras import activations [as 別名]
# 或者: from keras.activations import get [as 別名]
def __init__(self, units, kernel_initializer='glorot_uniform',
activation=None, weights=None,
kernel_regularizer=None, bias_regularizer=None,
activity_regularizer=None,
kernel_constraint=None, bias_constraint=None,
use_bias=True, **kwargs):
if 'input_shape' not in kwargs and 'input_dim' in kwargs:
kwargs['input_shape'] = (kwargs.pop('input_dim'),)
self.kernel_initializer = initializers.get(kernel_initializer)
self.activation = activations.get(activation)
self.units = units
self.kernel_regularizer = regularizers.get(kernel_regularizer)
self.bias_regularizer = regularizers.get(bias_regularizer)
self.activity_regularizer = regularizers.get(activity_regularizer)
self.kernel_constraint = constraints.get(kernel_constraint)
self.bias_constraint = constraints.get(bias_constraint)
self.use_bias = use_bias
self.initial_weights = weights
super(CosineDense, self).__init__(**kwargs)
示例10: __init__
# 需要導入模塊: from keras import activations [as 別名]
# 或者: from keras.activations import get [as 別名]
def __init__(self,
num_capsule,
dim_capsule,
routings=3,
share_weights=True,
initializer='glorot_uniform',
activation=None,
regularizer=None,
constraint=None,
**kwargs):
super(Capsule, self).__init__(**kwargs)
self.num_capsule = num_capsule
self.dim_capsule = dim_capsule
self.routings = routings
self.share_weights = share_weights
self.activation = activations.get(activation)
self.regularizer = regularizers.get(regularizer)
self.initializer = initializers.get(initializer)
self.constraint = constraints.get(constraint)
示例11: __init__
# 需要導入模塊: from keras import activations [as 別名]
# 或者: from keras.activations import get [as 別名]
def __init__(
self,
units: int = 10,
activation: str = 'tanh',
recurrent_activation: str = 'sigmoid',
kernel_initializer: str = 'glorot_uniform',
recurrent_initializer: str = 'orthogonal',
direction: str = 'lt',
**kwargs
):
""":class:`SpatialGRU` constructor."""
super().__init__(**kwargs)
self._units = units
self._activation = activations.get(activation)
self._recurrent_activation = activations.get(recurrent_activation)
self._kernel_initializer = initializers.get(kernel_initializer)
self._recurrent_initializer = initializers.get(recurrent_initializer)
self._direction = direction
示例12: __init__
# 需要導入模塊: from keras import activations [as 別名]
# 或者: from keras.activations import get [as 別名]
def __init__(self, nb_filters_in, nb_filters_out, nb_filters_att, nb_rows, nb_cols,
init='normal', inner_init='orthogonal', attentive_init='zero',
activation='tanh', inner_activation='sigmoid',
W_regularizer=None, U_regularizer=None,
weights=None, go_backwards=False,
**kwargs):
self.nb_filters_in = nb_filters_in
self.nb_filters_out = nb_filters_out
self.nb_filters_att = nb_filters_att
self.nb_rows = nb_rows
self.nb_cols = nb_cols
self.init = initializations.get(init)
self.inner_init = initializations.get(inner_init)
self.attentive_init = initializations.get(attentive_init)
self.activation = activations.get(activation)
self.inner_activation = activations.get(inner_activation)
self.initial_weights = weights
self.go_backwards = go_backwards
self.W_regularizer = W_regularizer
self.U_regularizer = U_regularizer
self.input_spec = [InputSpec(ndim=5)]
super(AttentiveConvLSTM, self).__init__(**kwargs)
示例13: __init__
# 需要導入模塊: from keras import activations [as 別名]
# 或者: from keras.activations import get [as 別名]
def __init__(self, output_dim, output_length,
init='glorot_uniform', inner_init='orthogonal',
activation='tanh',
W_regularizer=None, U_regularizer=None, b_regularizer=None,
dropout_W=0., dropout_U=0., **kwargs):
self.output_dim = output_dim
self.output_length = output_length
self.init = initializations.get(init)
self.inner_init = initializations.get(inner_init)
self.activation = activations.get(activation)
self.W_regularizer = regularizers.get(W_regularizer)
self.U_regularizer = regularizers.get(U_regularizer)
self.b_regularizer = regularizers.get(b_regularizer)
self.dropout_W, self.dropout_U = dropout_W, dropout_U
if self.dropout_W or self.dropout_U:
self.uses_learning_phase = True
super(DreamyRNN, self).__init__(**kwargs)
示例14: __init__
# 需要導入模塊: from keras import activations [as 別名]
# 或者: from keras.activations import get [as 別名]
def __init__(self, output_dim, init='glorot_uniform', activation='relu',weights=None,
W_regularizer=None, b_regularizer=None, activity_regularizer=None,
W_constraint=None, b_constraint=None, input_dim=None, **kwargs):
self.W_initializer = initializers.get(init)
self.b_initializer = initializers.get('zeros')
self.activation = activations.get(activation)
self.output_dim = output_dim
self.input_dim = input_dim
self.W_regularizer = regularizers.get(W_regularizer)
self.b_regularizer = regularizers.get(b_regularizer)
self.activity_regularizer = regularizers.get(activity_regularizer)
self.W_constraint = constraints.get(W_constraint)
self.b_constraint = constraints.get(b_constraint)
self.initial_weights = weights
self.input_spec = InputSpec(ndim=2)
if self.input_dim:
kwargs['input_shape'] = (self.input_dim,)
super(SparseFullyConnectedLayer, self).__init__(**kwargs)
示例15: __init__
# 需要導入模塊: from keras import activations [as 別名]
# 或者: from keras.activations import get [as 別名]
def __init__(self,
num_capsule,
dim_capsule,
routings=3,
share_weights=True,
activation='squash',
**kwargs):
super(Capsule, self).__init__(**kwargs)
self.num_capsule = num_capsule
self.dim_capsule = dim_capsule
self.routings = routings
self.share_weights = share_weights
if activation == 'squash':
self.activation = squash
else:
self.activation = activations.get(activation)