本文整理匯總了Python中keras.Sequential方法的典型用法代碼示例。如果您正苦於以下問題:Python keras.Sequential方法的具體用法?Python keras.Sequential怎麽用?Python keras.Sequential使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類keras
的用法示例。
在下文中一共展示了keras.Sequential方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: __init__
# 需要導入模塊: import keras [as 別名]
# 或者: from keras import Sequential [as 別名]
def __init__(self, input_shape, num_classes, **params):
"""
Constructor to initialize the deep neural network model. Takes the input
shape and number of classes and other parameters required for the
abstract class `Model` as parameters.
Args:
input_shape (tuple): shape of the input
num_classes (int): number of different classes ( labels ) in the data.
**params: Additional parameters required by the underlying abstract
class `Model`.
"""
super(DNN, self).__init__(**params)
self.input_shape = input_shape
self.model = Sequential()
self.make_default_model()
self.model.add(Dense(num_classes, activation='softmax'))
self.model.compile(loss='binary_crossentropy', optimizer='adam',
metrics=['accuracy'])
print(self.model.summary(), file=sys.stderr)
self.save_path = self.save_path or self.name + '_best_model.h5'
示例2: __build_model
# 需要導入模塊: import keras [as 別名]
# 或者: from keras import Sequential [as 別名]
def __build_model(self):
model = Sequential()
embedding_layer = Embedding(input_dim=len(self.vocab) + 1,
output_dim=self.embedding_dim,
weights=[self.embedding_mat],
trainable=False)
model.add(embedding_layer)
bilstm_layer = Bidirectional(LSTM(units=256, return_sequences=True))
model.add(bilstm_layer)
model.add(TimeDistributed(Dense(256, activation="relu")))
crf_layer = CRF(units=len(self.tags), sparse_target=True)
model.add(crf_layer)
model.compile(optimizer="adam", loss=crf_loss, metrics=[crf_viterbi_accuracy])
model.summary()
return model
示例3: _make_char_embedding_layer
# 需要導入模塊: import keras [as 別名]
# 或者: from keras import Sequential [as 別名]
def _make_char_embedding_layer(self) -> keras.layers.Layer:
"""
Apply embedding, conv and maxpooling operation over time dimension
for each token to obtain a vector.
:return: Wrapper Keras 'Layer' as character embedding feature
extractor.
"""
return keras.layers.TimeDistributed(keras.Sequential([
keras.layers.Embedding(
input_dim=self._params['char_embedding_input_dim'],
output_dim=self._params['char_embedding_output_dim'],
input_length=self._params['input_shapes'][2][-1]),
keras.layers.Conv1D(
filters=self._params['char_conv_filters'],
kernel_size=self._params['char_conv_kernel_size']),
keras.layers.GlobalMaxPooling1D()]))
示例4: __init__
# 需要導入模塊: import keras [as 別名]
# 或者: from keras import Sequential [as 別名]
def __init__(self, females_files_path, males_files_path, females_model_path, males_model_path):
self.females_training_path = females_files_path
self.males_training_path = males_files_path
self.error = 0
self.total_sample = 0
self.features_extractor = FeaturesExtractor()
# load models
self.females_gmm = pickle.load(open(females_model_path, 'rb'))
self.males_gmm = pickle.load(open(males_model_path, 'rb'))
# svm
self.X_train = np.vstack((self.females_gmm, self.males_gmm))
self.y_train = np.hstack(( 0 * np.ones(self.females_gmm.shape[0]), np.ones(self.males_gmm.shape[0])))
print(self.X_train.shape, self.y_train.shape)
# define the keras model
self.model = keras.Sequential()
self.model.add(keras.layers.Dense(39, input_dim=39, activation='relu'))
self.model.add(keras.layers.Dense(13, activation='relu'))
self.model.add(keras.layers.Dense( 2, activation='sigmoid'))
self.model.compile(optimizer = 'adam',
loss = 'binary_crossentropy',
metrics = ['accuracy'])
self.model.fit(self.X_train, keras.utils.to_categorical(self.y_train), epochs = 5)
示例5: build_generator
# 需要導入模塊: import keras [as 別名]
# 或者: from keras import Sequential [as 別名]
def build_generator():
gen_model = Sequential()
gen_model.add(Dense(input_dim=100, output_dim=2048))
gen_model.add(ReLU())
gen_model.add(Dense(256 * 8 * 8))
gen_model.add(BatchNormalization())
gen_model.add(ReLU())
gen_model.add(Reshape((8, 8, 256), input_shape=(256 * 8 * 8,)))
gen_model.add(UpSampling2D(size=(2, 2)))
gen_model.add(Conv2D(128, (5, 5), padding='same'))
gen_model.add(ReLU())
gen_model.add(UpSampling2D(size=(2, 2)))
gen_model.add(Conv2D(64, (5, 5), padding='same'))
gen_model.add(ReLU())
gen_model.add(UpSampling2D(size=(2, 2)))
gen_model.add(Conv2D(3, (5, 5), padding='same'))
gen_model.add(Activation('tanh'))
return gen_model
示例6: eval_batch
# 需要導入模塊: import keras [as 別名]
# 或者: from keras import Sequential [as 別名]
def eval_batch(o, ims, allow_input_layer = False):
layer_functions, has_input_layer = (
get_layer_functions (o) if isinstance (o, (keras.Sequential, keras.Model))
# TODO: Check it's sequential? --------------------------------------^
else o)
having_input_layer = allow_input_layer and has_input_layer
activations = []
for l, func in enumerate(layer_functions):
if not having_input_layer:
if l==0:
activations.append(func([ims])[0])
else:
activations.append(func([activations[l-1]])[0])
else:
if l==0:
activations.append([]) #activations.append(func([ims])[0])
elif l==1:
activations.append(func([ims])[0])
else:
activations.append(func([activations[l-1]])[0])
return activations
示例7: initiate_agent
# 需要導入模塊: import keras [as 別名]
# 或者: from keras import Sequential [as 別名]
def initiate_agent(self, nb_actions):
"""initiate a deep Q agent"""
self.model = Sequential()
self.model.add(Dense(512, activation='relu', input_shape=env.observation_space)) # pylint: disable=no-member
self.model.add(Dropout(0.2))
self.model.add(Dense(512, activation='relu'))
self.model.add(Dropout(0.2))
self.model.add(Dense(512, activation='relu'))
self.model.add(Dropout(0.2))
self.model.add(Dense(nb_actions, activation='linear'))
# Finally, we configure and compile our agent. You can use every built-in Keras optimizer and
# even the metrics!
memory = SequentialMemory(limit=memory_limit, window_length=window_length) # pylint: disable=unused-variable
policy = TrumpPolicy() # pylint: disable=unused-variable
示例8: main
# 需要導入模塊: import keras [as 別名]
# 或者: from keras import Sequential [as 別名]
def main():
x_train, x_test, y_train, y_test = get_train_test()
x_train = x_train.reshape(-1, 220)
x_test = x_test.reshape(-1, 220)
y_train_hot = to_categorical(y_train)
y_test_hot = to_categorical(y_test)
model = Sequential()
model.add(Dense(64, activation='relu', input_shape=(220,)))
model.add(Dense(64, activation='relu'))
model.add(Dense(64, activation='relu'))
model.add(Dense(6, activation='softmax'))
model.compile(loss=keras.losses.categorical_crossentropy,
optimizer=keras.optimizers.RMSprop(),
metrics=['accuracy'])
history = model.fit(x_train, y_train_hot, batch_size=100, epochs=20, verbose=1,
validation_data=(x_test, y_test_hot))
plot_history(history)
示例9: test_keras_callback
# 需要導入模塊: import keras [as 別名]
# 或者: from keras import Sequential [as 別名]
def test_keras_callback(self):
expected_score = f1_score(self.y_true, self.y_pred)
tokenizer = Tokenizer(lower=False)
tokenizer.fit_on_texts(self.y_true)
maxlen = max((len(row) for row in self.y_true))
def prepare(y, padding):
indexes = tokenizer.texts_to_sequences(y)
padded = pad_sequences(indexes, maxlen=maxlen, padding=padding, truncating=padding)
categorical = to_categorical(padded)
return categorical
for padding in ('pre', 'post'):
callback = F1Metrics(id2label=tokenizer.index_word)
y_true_cat = prepare(self.y_true, padding)
y_pred_cat = prepare(self.y_pred, padding)
input_shape = (1,)
layer = Lambda(lambda _: constant(y_pred_cat), input_shape=input_shape)
fake_model = Sequential(layers=[layer])
callback.set_model(fake_model)
X = numpy.zeros((y_true_cat.shape[0], 1))
# Verify that the callback translates sequences correctly by itself
y_true_cb, y_pred_cb = callback.predict(X, y_true_cat)
self.assertEqual(y_pred_cb, self.y_pred)
self.assertEqual(y_true_cb, self.y_true)
# Verify that the callback stores the correct number in logs
fake_model.compile(optimizer='adam', loss='categorical_crossentropy')
history = fake_model.fit(x=X, batch_size=y_true_cat.shape[0], y=y_true_cat,
validation_data=(X, y_true_cat),
callbacks=[callback])
actual_score = history.history['f1'][0]
self.assertAlmostEqual(actual_score, expected_score)
示例10: test_preprocess_weights_for_loading_gru_incompatible
# 需要導入模塊: import keras [as 別名]
# 或者: from keras import Sequential [as 別名]
def test_preprocess_weights_for_loading_gru_incompatible():
"""
Loading weights between incompatible layers should fail fast with an exception.
"""
def gru(cudnn=False, **kwargs):
layer_class = keras.layers.CuDNNGRU if cudnn else keras.layers.GRU
return layer_class(2, input_shape=[3, 5], **kwargs)
def initialize_weights(layer):
# A model is needed to initialize weights.
_ = keras.models.Sequential([layer])
return layer
def assert_not_compatible(src, dest, message):
with pytest.raises(ValueError) as ex:
keras.engine.topology.preprocess_weights_for_loading(
dest, initialize_weights(src).get_weights())
assert message in ex.value.message
assert_not_compatible(gru(), gru(cudnn=True),
'GRU(reset_after=False) is not compatible with CuDNNGRU')
assert_not_compatible(gru(cudnn=True), gru(),
'CuDNNGRU is not compatible with GRU(reset_after=False)')
assert_not_compatible(gru(), gru(reset_after=True),
'GRU(reset_after=False) is not compatible with GRU(reset_after=True)')
assert_not_compatible(gru(reset_after=True), gru(),
'GRU(reset_after=True) is not compatible with GRU(reset_after=False)')
示例11: create_model
# 需要導入模塊: import keras [as 別名]
# 或者: from keras import Sequential [as 別名]
def create_model():
model = Sequential()
model.add(Dense(12, input_dim=5, kernel_initializer='uniform', activation='relu'))
model.add(Dense(8, kernel_initializer='uniform', activation='relu'))
model.add(Dense(1, kernel_initializer='uniform', activation='sigmoid'))
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
return model
示例12: build_discriminator
# 需要導入模塊: import keras [as 別名]
# 或者: from keras import Sequential [as 別名]
def build_discriminator():
dis_model = Sequential()
dis_model.add(
Conv2D(128, (5, 5),
padding='same',
input_shape=(64, 64, 3))
)
dis_model.add(LeakyReLU(alpha=0.2))
dis_model.add(MaxPooling2D(pool_size=(2, 2)))
dis_model.add(Conv2D(256, (3, 3)))
dis_model.add(LeakyReLU(alpha=0.2))
dis_model.add(MaxPooling2D(pool_size=(2, 2)))
dis_model.add(Conv2D(512, (3, 3)))
dis_model.add(LeakyReLU(alpha=0.2))
dis_model.add(MaxPooling2D(pool_size=(2, 2)))
dis_model.add(Flatten())
dis_model.add(Dense(1024))
dis_model.add(LeakyReLU(alpha=0.2))
dis_model.add(Dense(1))
dis_model.add(Activation('sigmoid'))
return dis_model
示例13: build_adversarial_model
# 需要導入模塊: import keras [as 別名]
# 或者: from keras import Sequential [as 別名]
def build_adversarial_model(gen_model, dis_model):
model = Sequential()
model.add(gen_model)
dis_model.trainable = False
model.add(dis_model)
return model
示例14: build_model
# 需要導入模塊: import keras [as 別名]
# 或者: from keras import Sequential [as 別名]
def build_model(self):
'''構建模型'''
model = keras.Sequential()
model.add(Embedding(len(self.num2word) + 2, 300, input_length=self.config.max_len))
model.add(Bidirectional(GRU(128, return_sequences=True)))
model.add(Dropout(0.6))
model.add(Flatten())
model.add(Dense(len(self.words), activation='softmax'))
# 設置優化器
optimizer = Adam(lr=self.config.learning_rate)
model.compile(optimizer=optimizer, loss='categorical_crossentropy', metrics=['accuracy'])
self.model = model
示例15: create_model
# 需要導入模塊: import keras [as 別名]
# 或者: from keras import Sequential [as 別名]
def create_model(self, input_shape, nb_classes):
model = Sequential()
model.add(Conv2D(filters=32, input_shape=input_shape, padding='same', kernel_size=(3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(filters=32, padding='same', kernel_size=(3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(rate=0.25))
model.add(Conv2D(filters=64, kernel_size=(3, 3), padding='same'))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(filters=64, padding='same', kernel_size=(3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(rate=0.25))
model.add(Flatten())
model.add(Dense(units=512))
model.add(Activation('relu'))
model.add(Dropout(rate=0.5))
model.add(Dense(units=nb_classes))
model.add(Activation('softmax'))
model.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy'])
return model