本文整理匯總了Python中keras.Input方法的典型用法代碼示例。如果您正苦於以下問題:Python keras.Input方法的具體用法?Python keras.Input怎麽用?Python keras.Input使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類keras
的用法示例。
在下文中一共展示了keras.Input方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: __init__
# 需要導入模塊: import keras [as 別名]
# 或者: from keras import Input [as 別名]
def __init__(self, config: ModelConfig) -> None:
self.x_input = Input((config.obs_len, config.max_n_peds, pxy_dim))
# y_input = Input((config.obs_len, config.max_n_peds, pxy_dim))
self.grid_input = Input(
(config.obs_len, config.max_n_peds, config.max_n_peds,
config.grid_side_squared))
self.zeros_input = Input(
(config.obs_len, config.max_n_peds, config.lstm_state_dim))
# Social LSTM layers
self.lstm_layer = LSTM(config.lstm_state_dim, return_state=True)
self.W_e_relu = Dense(config.emb_dim, activation="relu")
self.W_a_relu = Dense(config.emb_dim, activation="relu")
self.W_p = Dense(out_dim)
self._build_model(config)
示例2: __build_model
# 需要導入模塊: import keras [as 別名]
# 或者: from keras import Input [as 別名]
def __build_model(self, emb_matrix=None):
word_input = Input(shape=(None,), dtype='int32', name="word_input")
word_emb = Embedding(self.vocab_size + 1, self.embed_dim,
weights=[emb_matrix] if emb_matrix is not None else None,
trainable=True if emb_matrix is None else False,
name='word_emb')(word_input)
bilstm_output = Bidirectional(LSTM(self.bi_lstm_units // 2,
return_sequences=True))(word_emb)
bilstm_output = Dropout(self.dropout_rate)(bilstm_output)
output = Dense(self.chunk_size + 1, kernel_initializer="he_normal")(bilstm_output)
output = CRF(self.chunk_size + 1, sparse_target=self.sparse_target)(output)
model = Model([word_input], [output])
parallel_model = model
if self.num_gpu > 1:
parallel_model = multi_gpu_model(model, gpus=self.num_gpu)
parallel_model.compile(optimizer=self.optimizer, loss=crf_loss, metrics=[crf_accuracy])
return model, parallel_model
示例3: test_specify_initial_state_keras_tensor
# 需要導入模塊: import keras [as 別名]
# 或者: from keras import Input [as 別名]
def test_specify_initial_state_keras_tensor():
input_size = 10
timesteps = 6
units = 2
num_samples = 32
for layer_class in [keras.layers.CuDNNGRU, keras.layers.CuDNNLSTM]:
num_states = 2 if layer_class is keras.layers.CuDNNLSTM else 1
inputs = keras.Input((timesteps, input_size))
initial_state = [keras.Input((units,)) for _ in range(num_states)]
layer = layer_class(units)
if len(initial_state) == 1:
output = layer(inputs, initial_state=initial_state[0])
else:
output = layer(inputs, initial_state=initial_state)
assert initial_state[0] in layer._inbound_nodes[0].input_tensors
model = keras.models.Model([inputs] + initial_state, output)
model.compile(loss='categorical_crossentropy', optimizer='adam')
inputs = np.random.random((num_samples, timesteps, input_size))
initial_state = [np.random.random((num_samples, units))
for _ in range(num_states)]
targets = np.random.random((num_samples, units))
model.fit([inputs] + initial_state, targets)
示例4: test_specify_initial_state_keras_tensor
# 需要導入模塊: import keras [as 別名]
# 或者: from keras import Input [as 別名]
def test_specify_initial_state_keras_tensor(layer_class):
num_states = 2 if layer_class is recurrent.LSTM else 1
# Test with Keras tensor
inputs = Input((timesteps, embedding_dim))
initial_state = [Input((units,)) for _ in range(num_states)]
layer = layer_class(units)
if len(initial_state) == 1:
output = layer(inputs, initial_state=initial_state[0])
else:
output = layer(inputs, initial_state=initial_state)
assert initial_state[0] in layer._inbound_nodes[0].input_tensors
model = Model([inputs] + initial_state, output)
model.compile(loss='categorical_crossentropy', optimizer='adam')
inputs = np.random.random((num_samples, timesteps, embedding_dim))
initial_state = [np.random.random((num_samples, units))
for _ in range(num_states)]
targets = np.random.random((num_samples, units))
model.fit([inputs] + initial_state, targets)
示例5: test_specify_initial_state_non_keras_tensor
# 需要導入模塊: import keras [as 別名]
# 或者: from keras import Input [as 別名]
def test_specify_initial_state_non_keras_tensor(layer_class):
num_states = 2 if layer_class is recurrent.LSTM else 1
# Test with non-Keras tensor
inputs = Input((timesteps, embedding_dim))
initial_state = [K.random_normal_variable((num_samples, units), 0, 1)
for _ in range(num_states)]
layer = layer_class(units)
output = layer(inputs, initial_state=initial_state)
model = Model(inputs, output)
model.compile(loss='categorical_crossentropy', optimizer='adam')
inputs = np.random.random((num_samples, timesteps, embedding_dim))
targets = np.random.random((num_samples, units))
model.fit(inputs, targets)
示例6: test_initial_states_as_other_inputs
# 需要導入模塊: import keras [as 別名]
# 或者: from keras import Input [as 別名]
def test_initial_states_as_other_inputs(layer_class):
num_states = 2 if layer_class is recurrent.LSTM else 1
# Test with Keras tensor
main_inputs = Input((timesteps, embedding_dim))
initial_state = [Input((units,)) for _ in range(num_states)]
inputs = [main_inputs] + initial_state
layer = layer_class(units)
output = layer(inputs)
assert initial_state[0] in layer._inbound_nodes[0].input_tensors
model = Model(inputs, output)
model.compile(loss='categorical_crossentropy', optimizer='adam')
main_inputs = np.random.random((num_samples, timesteps, embedding_dim))
initial_state = [np.random.random((num_samples, units))
for _ in range(num_states)]
targets = np.random.random((num_samples, units))
model.train_on_batch([main_inputs] + initial_state, targets)
示例7: test_stacked_rnn_attributes
# 需要導入模塊: import keras [as 別名]
# 或者: from keras import Input [as 別名]
def test_stacked_rnn_attributes():
cells = [recurrent.LSTMCell(3),
recurrent.LSTMCell(3, kernel_regularizer='l2')]
layer = recurrent.RNN(cells)
layer.build((None, None, 5))
# Test regularization losses
assert len(layer.losses) == 1
# Test weights
assert len(layer.trainable_weights) == 6
cells[0].trainable = False
assert len(layer.trainable_weights) == 3
assert len(layer.non_trainable_weights) == 3
# Test `get_losses_for`
x = keras.Input((None, 5))
y = K.sum(x)
cells[0].add_loss(y, inputs=x)
assert layer.get_losses_for(x) == [y]
示例8: test_return_state
# 需要導入模塊: import keras [as 別名]
# 或者: from keras import Input [as 別名]
def test_return_state():
input_size = 10
timesteps = 6
units = 2
num_samples = 32
for layer_class in [keras.layers.CuDNNGRU, keras.layers.CuDNNLSTM]:
num_states = 2 if layer_class is keras.layers.CuDNNLSTM else 1
inputs = keras.Input(batch_shape=(num_samples, timesteps, input_size))
layer = layer_class(units, return_state=True, stateful=True)
outputs = layer(inputs)
output, state = outputs[0], outputs[1:]
assert len(state) == num_states
model = keras.models.Model(inputs, state[0])
inputs = np.random.random((num_samples, timesteps, input_size))
state = model.predict(inputs)
np.testing.assert_allclose(
keras.backend.eval(layer.states[0]), state, atol=1e-4)
示例9: test_specify_state_with_masking
# 需要導入模塊: import keras [as 別名]
# 或者: from keras import Input [as 別名]
def test_specify_state_with_masking(layer_class):
''' This test based on a previously failing issue here:
https://github.com/keras-team/keras/issues/1567
'''
num_states = 2 if layer_class is recurrent.LSTM else 1
inputs = Input((timesteps, embedding_dim))
_ = Masking()(inputs)
initial_state = [Input((units,)) for _ in range(num_states)]
output = layer_class(units)(inputs, initial_state=initial_state)
model = Model([inputs] + initial_state, output)
model.compile(loss='categorical_crossentropy', optimizer='adam')
inputs = np.random.random((num_samples, timesteps, embedding_dim))
initial_state = [np.random.random((num_samples, units))
for _ in range(num_states)]
targets = np.random.random((num_samples, units))
model.fit([inputs] + initial_state, targets)
示例10: main
# 需要導入模塊: import keras [as 別名]
# 或者: from keras import Input [as 別名]
def main(args):
train_gen, test_gen, train_samples, test_samples = get_stereo_image_generators(args.data_path + '/train',
args.data_path + '/test',
img_rows=args.input_height,
img_cols=args.input_width,
batch_size=args.batch_size,
shuffle=False)
image_generator = get_stereo_image_generators('data/train', 'data/test', batch_size=1, shuffle=False)
input_image = image_generator[0].__next__()[0][0]
input_shape = (args.input_height, args.input_width, 3)
left_input = Input(input_shape)
right_input = Input(input_shape)
ae = AutoEncoderModel(left_input, right_input, args.learning_rate)
ae.model.summary()
plot_model(ae.model, show_shapes=True, to_file='scratch/ae.png')
ae.model.fit_generator(train_gen,
steps_per_epoch=train_samples // args.batch_size,
# validation_data=test_gen,
# validation_steps=test_samples // args.batch_size,
epochs=args.num_epochs,
verbose=1,
callbacks=[VisualizeOutput(input_image),
TensorBoard(log_dir=args.log_directory,
batch_size=args.batch_size,
write_graph=False),
ModelCheckpoint(os.path.join(args.models_dir, args.model_name + '.h5'),
monitor='loss',
verbose=1,
save_best_only=True)])
示例11: input_nub_generator
# 需要導入模塊: import keras [as 別名]
# 或者: from keras import Input [as 別名]
def input_nub_generator(variable, transformed_observations):
"""
Generate an input layer and input 'nub' for a keras network.
- input_layer: The input layer accepts data from the outside world.
- input_nub: The input nub will always include the input_layer as its first layer. It may also include
other layers for handling the data type in specific ways
:param variable: Name of the variable
:type variable: str
:param transformed_observations: A dataframe, containing either the specified variable, or derived variables
:type transformed_observations: pandas.DataFrame
:return: A tuple containing the input layer, and the last layer of the nub
"""
# Get transformed data for shaping
transformed = transformed_observations[variable].as_matrix()
# Set up dimensions for input_layer layer
if len(transformed.shape) >= 2:
input_sequence_length = int(transformed.shape[1])
else:
input_sequence_length = 1
# Create input_layer layer
input_layer = keras.Input(shape=(input_sequence_length,), dtype='float32',
name=lib.namespace_conversion('input_{}'.format(variable)))
input_nub = input_layer
# Return, in format of input_layer, last variable-specific layer
return input_layer, input_nub
示例12: input_nub_generator
# 需要導入模塊: import keras [as 別名]
# 或者: from keras import Input [as 別名]
def input_nub_generator(self, variable, transformed_observations):
"""
Generate an input layer and input 'nub' for a Keras network.
- input_layer: The input layer accepts data from the outside world.
- input_nub: The input nub will always include the input_layer as its first layer. It may also include
other layers for handling the data type in specific ways
:param variable: Name of the variable
:type variable: str
:param transformed_obervations: A dataframe, containing either the specified variable, or derived variables
:type transformed_obervations: pandas.DataFrame
:return: A tuple containing the input layer, and the last layer of the nub
"""
transformed = transformed_observations[variable].as_matrix()
# Set up dimensions for input_layer layer
if len(transformed.shape) >= 2:
input_sequence_length = int(transformed.shape[1])
else:
input_sequence_length = 1
# Create input_layer layer
input_layer = keras.Input(shape=(input_sequence_length,),
name=lib.namespace_conversion('input_{}'.format(variable)))
input_nub = input_layer
# Return, in format of input_layer, last variable-specific layer
return input_layer, input_nub
示例13: test_clone_sequential_model
# 需要導入模塊: import keras [as 別名]
# 或者: from keras import Input [as 別名]
def test_clone_sequential_model():
val_a = np.random.random((10, 4))
val_out = np.random.random((10, 4))
model = keras.models.Sequential()
model.add(keras.layers.Dense(4, input_shape=(4,)))
model.add(keras.layers.BatchNormalization())
model.add(keras.layers.Dropout(0.5))
model.add(keras.layers.Dense(4))
if K.backend() == 'tensorflow':
# Everything should work in a new session.
K.clear_session()
# With placeholder creation
new_model = keras.models.clone_model(model)
new_model.compile('rmsprop', 'mse')
new_model.train_on_batch(val_a, val_out)
# On top of new tensor
input_a = keras.Input(shape=(4,))
new_model = keras.models.clone_model(
model, input_tensors=input_a)
new_model.compile('rmsprop', 'mse')
new_model.train_on_batch(val_a, val_out)
# On top of new, non-Keras tensor
input_a = keras.backend.variable(val_a)
new_model = keras.models.clone_model(
model, input_tensors=input_a)
new_model.compile('rmsprop', 'mse')
new_model.train_on_batch(None, val_out)
示例14: _test_no_grad
# 需要導入模塊: import keras [as 別名]
# 或者: from keras import Input [as 別名]
def _test_no_grad(optimizer):
inp = Input([3])
x = Dense(10)(inp)
x = Lambda(lambda l: 1.0 * K.reshape(K.cast(K.argmax(l), 'float32'), [-1, 1]))(x)
mod = Model(inp, x)
mod.compile(optimizer, 'mse')
with pytest.raises(ValueError):
mod.fit(np.zeros([10, 3]), np.zeros([10, 1], np.float32), batch_size=10, epochs=10)
示例15: multi_gpu_test_multi_io_model
# 需要導入模塊: import keras [as 別名]
# 或者: from keras import Input [as 別名]
def multi_gpu_test_multi_io_model():
print('####### test multi-io model')
num_samples = 1000
input_dim_a = 10
input_dim_b = 5
output_dim_a = 1
output_dim_b = 2
hidden_dim = 10
gpus = 8
target_gpu_id = [0, 2, 4]
epochs = 2
input_a = keras.Input((input_dim_a,))
input_b = keras.Input((input_dim_b,))
a = keras.layers.Dense(hidden_dim)(input_a)
b = keras.layers.Dense(hidden_dim)(input_b)
c = keras.layers.concatenate([a, b])
output_a = keras.layers.Dense(output_dim_a)(c)
output_b = keras.layers.Dense(output_dim_b)(c)
model = keras.models.Model([input_a, input_b], [output_a, output_b])
a_x = np.random.random((num_samples, input_dim_a))
b_x = np.random.random((num_samples, input_dim_b))
a_y = np.random.random((num_samples, output_dim_a))
b_y = np.random.random((num_samples, output_dim_b))
parallel_model = multi_gpu_model(model, gpus=gpus)
parallel_model.compile(loss='mse', optimizer='rmsprop')
parallel_model.fit([a_x, b_x], [a_y, b_y], epochs=epochs)
parallel_model = multi_gpu_model(model, gpus=target_gpu_id)
parallel_model.compile(loss='mse', optimizer='rmsprop')
parallel_model.fit([a_x, b_x], [a_y, b_y], epochs=epochs)