當前位置: 首頁>>代碼示例>>Python>>正文


Python keras.Input方法代碼示例

本文整理匯總了Python中keras.Input方法的典型用法代碼示例。如果您正苦於以下問題:Python keras.Input方法的具體用法?Python keras.Input怎麽用?Python keras.Input使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在keras的用法示例。


在下文中一共展示了keras.Input方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: import keras [as 別名]
# 或者: from keras import Input [as 別名]
def __init__(self, config: ModelConfig) -> None:
        self.x_input = Input((config.obs_len, config.max_n_peds, pxy_dim))
        # y_input = Input((config.obs_len, config.max_n_peds, pxy_dim))
        self.grid_input = Input(
            (config.obs_len, config.max_n_peds, config.max_n_peds,
             config.grid_side_squared))
        self.zeros_input = Input(
            (config.obs_len, config.max_n_peds, config.lstm_state_dim))

        # Social LSTM layers
        self.lstm_layer = LSTM(config.lstm_state_dim, return_state=True)
        self.W_e_relu = Dense(config.emb_dim, activation="relu")
        self.W_a_relu = Dense(config.emb_dim, activation="relu")
        self.W_p = Dense(out_dim)

        self._build_model(config) 
開發者ID:t2kasa,項目名稱:social_lstm_keras_tf,代碼行數:18,代碼來源:my_social_model.py

示例2: __build_model

# 需要導入模塊: import keras [as 別名]
# 或者: from keras import Input [as 別名]
def __build_model(self, emb_matrix=None):
        word_input = Input(shape=(None,), dtype='int32', name="word_input")

        word_emb = Embedding(self.vocab_size + 1, self.embed_dim,
                             weights=[emb_matrix] if emb_matrix is not None else None,
                             trainable=True if emb_matrix is None else False,
                             name='word_emb')(word_input)

        bilstm_output = Bidirectional(LSTM(self.bi_lstm_units // 2,
                                           return_sequences=True))(word_emb)

        bilstm_output = Dropout(self.dropout_rate)(bilstm_output)

        output = Dense(self.chunk_size + 1, kernel_initializer="he_normal")(bilstm_output)
        output = CRF(self.chunk_size + 1, sparse_target=self.sparse_target)(output)

        model = Model([word_input], [output])
        parallel_model = model
        if self.num_gpu > 1:
            parallel_model = multi_gpu_model(model, gpus=self.num_gpu)

        parallel_model.compile(optimizer=self.optimizer, loss=crf_loss, metrics=[crf_accuracy])
        return model, parallel_model 
開發者ID:GlassyWing,項目名稱:bi-lstm-crf,代碼行數:25,代碼來源:core.py

示例3: test_specify_initial_state_keras_tensor

# 需要導入模塊: import keras [as 別名]
# 或者: from keras import Input [as 別名]
def test_specify_initial_state_keras_tensor():
    input_size = 10
    timesteps = 6
    units = 2
    num_samples = 32
    for layer_class in [keras.layers.CuDNNGRU, keras.layers.CuDNNLSTM]:
        num_states = 2 if layer_class is keras.layers.CuDNNLSTM else 1

        inputs = keras.Input((timesteps, input_size))
        initial_state = [keras.Input((units,)) for _ in range(num_states)]
        layer = layer_class(units)
        if len(initial_state) == 1:
            output = layer(inputs, initial_state=initial_state[0])
        else:
            output = layer(inputs, initial_state=initial_state)
        assert initial_state[0] in layer._inbound_nodes[0].input_tensors

        model = keras.models.Model([inputs] + initial_state, output)
        model.compile(loss='categorical_crossentropy', optimizer='adam')

        inputs = np.random.random((num_samples, timesteps, input_size))
        initial_state = [np.random.random((num_samples, units))
                         for _ in range(num_states)]
        targets = np.random.random((num_samples, units))
        model.fit([inputs] + initial_state, targets) 
開發者ID:hello-sea,項目名稱:DeepLearning_Wavelet-LSTM,代碼行數:27,代碼來源:cudnn_recurrent_test.py

示例4: test_specify_initial_state_keras_tensor

# 需要導入模塊: import keras [as 別名]
# 或者: from keras import Input [as 別名]
def test_specify_initial_state_keras_tensor(layer_class):
    num_states = 2 if layer_class is recurrent.LSTM else 1

    # Test with Keras tensor
    inputs = Input((timesteps, embedding_dim))
    initial_state = [Input((units,)) for _ in range(num_states)]
    layer = layer_class(units)
    if len(initial_state) == 1:
        output = layer(inputs, initial_state=initial_state[0])
    else:
        output = layer(inputs, initial_state=initial_state)
    assert initial_state[0] in layer._inbound_nodes[0].input_tensors

    model = Model([inputs] + initial_state, output)
    model.compile(loss='categorical_crossentropy', optimizer='adam')

    inputs = np.random.random((num_samples, timesteps, embedding_dim))
    initial_state = [np.random.random((num_samples, units))
                     for _ in range(num_states)]
    targets = np.random.random((num_samples, units))
    model.fit([inputs] + initial_state, targets) 
開發者ID:hello-sea,項目名稱:DeepLearning_Wavelet-LSTM,代碼行數:23,代碼來源:recurrent_test.py

示例5: test_specify_initial_state_non_keras_tensor

# 需要導入模塊: import keras [as 別名]
# 或者: from keras import Input [as 別名]
def test_specify_initial_state_non_keras_tensor(layer_class):
    num_states = 2 if layer_class is recurrent.LSTM else 1

    # Test with non-Keras tensor
    inputs = Input((timesteps, embedding_dim))
    initial_state = [K.random_normal_variable((num_samples, units), 0, 1)
                     for _ in range(num_states)]
    layer = layer_class(units)
    output = layer(inputs, initial_state=initial_state)

    model = Model(inputs, output)
    model.compile(loss='categorical_crossentropy', optimizer='adam')

    inputs = np.random.random((num_samples, timesteps, embedding_dim))
    targets = np.random.random((num_samples, units))
    model.fit(inputs, targets) 
開發者ID:hello-sea,項目名稱:DeepLearning_Wavelet-LSTM,代碼行數:18,代碼來源:recurrent_test.py

示例6: test_initial_states_as_other_inputs

# 需要導入模塊: import keras [as 別名]
# 或者: from keras import Input [as 別名]
def test_initial_states_as_other_inputs(layer_class):
    num_states = 2 if layer_class is recurrent.LSTM else 1

    # Test with Keras tensor
    main_inputs = Input((timesteps, embedding_dim))
    initial_state = [Input((units,)) for _ in range(num_states)]
    inputs = [main_inputs] + initial_state

    layer = layer_class(units)
    output = layer(inputs)
    assert initial_state[0] in layer._inbound_nodes[0].input_tensors

    model = Model(inputs, output)
    model.compile(loss='categorical_crossentropy', optimizer='adam')

    main_inputs = np.random.random((num_samples, timesteps, embedding_dim))
    initial_state = [np.random.random((num_samples, units))
                     for _ in range(num_states)]
    targets = np.random.random((num_samples, units))
    model.train_on_batch([main_inputs] + initial_state, targets) 
開發者ID:hello-sea,項目名稱:DeepLearning_Wavelet-LSTM,代碼行數:22,代碼來源:recurrent_test.py

示例7: test_stacked_rnn_attributes

# 需要導入模塊: import keras [as 別名]
# 或者: from keras import Input [as 別名]
def test_stacked_rnn_attributes():
    cells = [recurrent.LSTMCell(3),
             recurrent.LSTMCell(3, kernel_regularizer='l2')]
    layer = recurrent.RNN(cells)
    layer.build((None, None, 5))

    # Test regularization losses
    assert len(layer.losses) == 1

    # Test weights
    assert len(layer.trainable_weights) == 6
    cells[0].trainable = False
    assert len(layer.trainable_weights) == 3
    assert len(layer.non_trainable_weights) == 3

    # Test `get_losses_for`
    x = keras.Input((None, 5))
    y = K.sum(x)
    cells[0].add_loss(y, inputs=x)
    assert layer.get_losses_for(x) == [y] 
開發者ID:hello-sea,項目名稱:DeepLearning_Wavelet-LSTM,代碼行數:22,代碼來源:recurrent_test.py

示例8: test_return_state

# 需要導入模塊: import keras [as 別名]
# 或者: from keras import Input [as 別名]
def test_return_state():
    input_size = 10
    timesteps = 6
    units = 2
    num_samples = 32

    for layer_class in [keras.layers.CuDNNGRU, keras.layers.CuDNNLSTM]:
        num_states = 2 if layer_class is keras.layers.CuDNNLSTM else 1

        inputs = keras.Input(batch_shape=(num_samples, timesteps, input_size))
        layer = layer_class(units, return_state=True, stateful=True)
        outputs = layer(inputs)
        output, state = outputs[0], outputs[1:]
        assert len(state) == num_states
        model = keras.models.Model(inputs, state[0])

        inputs = np.random.random((num_samples, timesteps, input_size))
        state = model.predict(inputs)
        np.testing.assert_allclose(
            keras.backend.eval(layer.states[0]), state, atol=1e-4) 
開發者ID:hello-sea,項目名稱:DeepLearning_Wavelet-LSTM,代碼行數:22,代碼來源:cudnn_recurrent_test.py

示例9: test_specify_state_with_masking

# 需要導入模塊: import keras [as 別名]
# 或者: from keras import Input [as 別名]
def test_specify_state_with_masking(layer_class):
    ''' This test based on a previously failing issue here:
    https://github.com/keras-team/keras/issues/1567
    '''
    num_states = 2 if layer_class is recurrent.LSTM else 1

    inputs = Input((timesteps, embedding_dim))
    _ = Masking()(inputs)
    initial_state = [Input((units,)) for _ in range(num_states)]
    output = layer_class(units)(inputs, initial_state=initial_state)

    model = Model([inputs] + initial_state, output)
    model.compile(loss='categorical_crossentropy', optimizer='adam')

    inputs = np.random.random((num_samples, timesteps, embedding_dim))
    initial_state = [np.random.random((num_samples, units))
                     for _ in range(num_states)]
    targets = np.random.random((num_samples, units))
    model.fit([inputs] + initial_state, targets) 
開發者ID:hello-sea,項目名稱:DeepLearning_Wavelet-LSTM,代碼行數:21,代碼來源:recurrent_test.py

示例10: main

# 需要導入模塊: import keras [as 別名]
# 或者: from keras import Input [as 別名]
def main(args):
    train_gen, test_gen, train_samples, test_samples = get_stereo_image_generators(args.data_path + '/train',
                                                                                   args.data_path + '/test',
                                                                                   img_rows=args.input_height,
                                                                                   img_cols=args.input_width,
                                                                                   batch_size=args.batch_size,
                                                                                   shuffle=False)
    image_generator = get_stereo_image_generators('data/train', 'data/test', batch_size=1, shuffle=False)

    input_image = image_generator[0].__next__()[0][0]

    input_shape = (args.input_height, args.input_width, 3)
    left_input = Input(input_shape)
    right_input = Input(input_shape)

    ae = AutoEncoderModel(left_input, right_input, args.learning_rate)
    ae.model.summary()
    plot_model(ae.model, show_shapes=True, to_file='scratch/ae.png')
    ae.model.fit_generator(train_gen,
                           steps_per_epoch=train_samples // args.batch_size,
                           # validation_data=test_gen,
                           # validation_steps=test_samples // args.batch_size,
                           epochs=args.num_epochs,
                           verbose=1,
                           callbacks=[VisualizeOutput(input_image),
                                      TensorBoard(log_dir=args.log_directory,
                                                  batch_size=args.batch_size,
                                                  write_graph=False),
                                      ModelCheckpoint(os.path.join(args.models_dir, args.model_name + '.h5'),
                                                      monitor='loss',
                                                      verbose=1,
                                                      save_best_only=True)]) 
開發者ID:drmaj,項目名稱:UnDeepVO,代碼行數:34,代碼來源:autoencoder_train.py

示例11: input_nub_generator

# 需要導入模塊: import keras [as 別名]
# 或者: from keras import Input [as 別名]
def input_nub_generator(variable, transformed_observations):
        """
        Generate an input layer and input 'nub' for a keras network.

         - input_layer: The input layer accepts data from the outside world.
         - input_nub: The input nub will always include the input_layer as its first layer. It may also include
         other layers for handling the data type in specific ways

        :param variable: Name of the variable
        :type variable: str
        :param transformed_observations: A dataframe, containing either the specified variable, or derived variables
        :type transformed_observations: pandas.DataFrame
        :return: A tuple containing the input layer, and the last layer of the nub
        """
        # Get transformed data for shaping
        transformed = transformed_observations[variable].as_matrix()

        # Set up dimensions for input_layer layer
        if len(transformed.shape) >= 2:
            input_sequence_length = int(transformed.shape[1])
        else:
            input_sequence_length = 1

        # Create input_layer layer
        input_layer = keras.Input(shape=(input_sequence_length,), dtype='float32',
                                  name=lib.namespace_conversion('input_{}'.format(variable)))
        input_nub = input_layer

        # Return, in format of input_layer, last variable-specific layer
        return input_layer, input_nub 
開發者ID:bjherger,項目名稱:keras-pandas,代碼行數:32,代碼來源:Numerical.py

示例12: input_nub_generator

# 需要導入模塊: import keras [as 別名]
# 或者: from keras import Input [as 別名]
def input_nub_generator(self, variable, transformed_observations):
        """
        Generate an input layer and input 'nub' for a Keras network.

         - input_layer: The input layer accepts data from the outside world.
         - input_nub: The input nub will always include the input_layer as its first layer. It may also include
         other layers for handling the data type in specific ways

        :param variable: Name of the variable
        :type variable: str
        :param transformed_obervations: A dataframe, containing either the specified variable, or derived variables
        :type transformed_obervations: pandas.DataFrame
        :return: A tuple containing the input layer, and the last layer of the nub
        """

        transformed = transformed_observations[variable].as_matrix()

        # Set up dimensions for input_layer layer
        if len(transformed.shape) >= 2:
            input_sequence_length = int(transformed.shape[1])
        else:
            input_sequence_length = 1

        # Create input_layer layer
        input_layer = keras.Input(shape=(input_sequence_length,),
                                  name=lib.namespace_conversion('input_{}'.format(variable)))
        input_nub = input_layer

        # Return, in format of input_layer, last variable-specific layer
        return input_layer, input_nub 
開發者ID:bjherger,項目名稱:keras-pandas,代碼行數:32,代碼來源:Boolean.py

示例13: test_clone_sequential_model

# 需要導入模塊: import keras [as 別名]
# 或者: from keras import Input [as 別名]
def test_clone_sequential_model():
    val_a = np.random.random((10, 4))
    val_out = np.random.random((10, 4))

    model = keras.models.Sequential()
    model.add(keras.layers.Dense(4, input_shape=(4,)))
    model.add(keras.layers.BatchNormalization())
    model.add(keras.layers.Dropout(0.5))
    model.add(keras.layers.Dense(4))

    if K.backend() == 'tensorflow':
        # Everything should work in a new session.
        K.clear_session()

    # With placeholder creation
    new_model = keras.models.clone_model(model)
    new_model.compile('rmsprop', 'mse')
    new_model.train_on_batch(val_a, val_out)

    # On top of new tensor
    input_a = keras.Input(shape=(4,))
    new_model = keras.models.clone_model(
        model, input_tensors=input_a)
    new_model.compile('rmsprop', 'mse')
    new_model.train_on_batch(val_a, val_out)

    # On top of new, non-Keras tensor
    input_a = keras.backend.variable(val_a)
    new_model = keras.models.clone_model(
        model, input_tensors=input_a)
    new_model.compile('rmsprop', 'mse')
    new_model.train_on_batch(None, val_out) 
開發者ID:hello-sea,項目名稱:DeepLearning_Wavelet-LSTM,代碼行數:34,代碼來源:test_sequential_model.py

示例14: _test_no_grad

# 需要導入模塊: import keras [as 別名]
# 或者: from keras import Input [as 別名]
def _test_no_grad(optimizer):
    inp = Input([3])
    x = Dense(10)(inp)
    x = Lambda(lambda l: 1.0 * K.reshape(K.cast(K.argmax(l), 'float32'), [-1, 1]))(x)
    mod = Model(inp, x)
    mod.compile(optimizer, 'mse')
    with pytest.raises(ValueError):
        mod.fit(np.zeros([10, 3]), np.zeros([10, 1], np.float32), batch_size=10, epochs=10) 
開發者ID:hello-sea,項目名稱:DeepLearning_Wavelet-LSTM,代碼行數:10,代碼來源:optimizers_test.py

示例15: multi_gpu_test_multi_io_model

# 需要導入模塊: import keras [as 別名]
# 或者: from keras import Input [as 別名]
def multi_gpu_test_multi_io_model():
    print('####### test multi-io model')
    num_samples = 1000
    input_dim_a = 10
    input_dim_b = 5
    output_dim_a = 1
    output_dim_b = 2
    hidden_dim = 10
    gpus = 8
    target_gpu_id = [0, 2, 4]
    epochs = 2

    input_a = keras.Input((input_dim_a,))
    input_b = keras.Input((input_dim_b,))
    a = keras.layers.Dense(hidden_dim)(input_a)
    b = keras.layers.Dense(hidden_dim)(input_b)
    c = keras.layers.concatenate([a, b])
    output_a = keras.layers.Dense(output_dim_a)(c)
    output_b = keras.layers.Dense(output_dim_b)(c)
    model = keras.models.Model([input_a, input_b], [output_a, output_b])

    a_x = np.random.random((num_samples, input_dim_a))
    b_x = np.random.random((num_samples, input_dim_b))
    a_y = np.random.random((num_samples, output_dim_a))
    b_y = np.random.random((num_samples, output_dim_b))

    parallel_model = multi_gpu_model(model, gpus=gpus)
    parallel_model.compile(loss='mse', optimizer='rmsprop')
    parallel_model.fit([a_x, b_x], [a_y, b_y], epochs=epochs)

    parallel_model = multi_gpu_model(model, gpus=target_gpu_id)
    parallel_model.compile(loss='mse', optimizer='rmsprop')
    parallel_model.fit([a_x, b_x], [a_y, b_y], epochs=epochs) 
開發者ID:hello-sea,項目名稱:DeepLearning_Wavelet-LSTM,代碼行數:35,代碼來源:multi_gpu_test.py


注:本文中的keras.Input方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。