本文整理匯總了Python中kafka.common.KafkaUnavailableError方法的典型用法代碼示例。如果您正苦於以下問題:Python common.KafkaUnavailableError方法的具體用法?Python common.KafkaUnavailableError怎麽用?Python common.KafkaUnavailableError使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類kafka.common
的用法示例。
在下文中一共展示了common.KafkaUnavailableError方法的14個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: get_watermark_for_topic
# 需要導入模塊: from kafka import common [as 別名]
# 或者: from kafka.common import KafkaUnavailableError [as 別名]
def get_watermark_for_topic(
kafka_client,
topic,
):
"""This method:
* refreshes metadata for the kafka client
* fetches watermarks
:param kafka_client: KafkaToolClient instance
:param topic: the topic
:returns: dict <topic>: [ConsumerPartitionOffsets]
"""
# Refresh client metadata. We do not use the topic list, because we
# don't want to accidentally create the topic if it does not exist.
# If Kafka is unavailable, let's retry loading client metadata
try:
kafka_client.load_metadata_for_topics()
except KafkaUnavailableError:
kafka_client.load_metadata_for_topics()
watermarks = get_topics_watermarks(
kafka_client, [topic]
)
return watermarks
示例2: get_kafka_connection
# 需要導入模塊: from kafka import common [as 別名]
# 或者: from kafka.common import KafkaUnavailableError [as 別名]
def get_kafka_connection(cls, timeout_seconds=15):
"""Returns a kafka connection, waiting timeout_seconds for the container
to come up.
Args:
timeout_seconds: Retry time (seconds) to get a kafka connection
"""
end_time = time.time() + timeout_seconds
logger.info("Getting connection to Kafka container on yocalhost")
while end_time > time.time():
try:
return KafkaClient(get_config().cluster_config.broker_list)
except KafkaUnavailableError:
logger.info("Kafka not yet available, waiting...")
time.sleep(0.1)
raise KafkaUnavailableError()
示例3: get_watermark_for_regex
# 需要導入模塊: from kafka import common [as 別名]
# 或者: from kafka.common import KafkaUnavailableError [as 別名]
def get_watermark_for_regex(
kafka_client,
topic_regex,
):
"""This method:
* refreshes metadata for the kafka client
* fetches watermarks
:param kafka_client: KafkaToolClient instance
:param topic: the topic regex
:returns: dict <topic>: [ConsumerPartitionOffsets]
"""
# Refresh client metadata. We do not use the topic list, because we
# don't want to accidentally create the topic if it does not exist.
# If Kafka is unavailable, let's retry loading client metadata
try:
kafka_client.load_metadata_for_topics()
except KafkaUnavailableError:
kafka_client.load_metadata_for_topics()
topics_to_be_considered = []
for topic in kafka_client.topic_partitions:
if re.search(topic_regex, topic):
topics_to_be_considered.append(topic)
watermarks = get_topics_watermarks(
kafka_client, topics_to_be_considered
)
return watermarks
示例4: test_get_metadata_kafka_error
# 需要導入模塊: from kafka import common [as 別名]
# 或者: from kafka.common import KafkaUnavailableError [as 別名]
def test_get_metadata_kafka_error(self, kafka_client_mock):
with mock.patch.object(
MyKafkaToolClient,
'load_metadata_for_topics',
side_effect=KafkaUnavailableError("Boom!"),
autospec=True
) as mock_func:
with pytest.raises(KafkaUnavailableError):
get_consumer_offsets_metadata(
kafka_client_mock,
self.group,
{'topic1': [99]},
)
assert mock_func.call_count == 2
示例5: test_get_metadata_kafka_error
# 需要導入模塊: from kafka import common [as 別名]
# 或者: from kafka.common import KafkaUnavailableError [as 別名]
def test_get_metadata_kafka_error(self, kafka_client_mock):
with mock.patch.object(
MyKafkaClient,
'load_metadata_for_topics',
side_effect=KafkaUnavailableError("Boom!"),
autospec=True
) as mock_func:
with pytest.raises(KafkaUnavailableError):
get_consumer_offsets_metadata(
kafka_client_mock,
self.group,
{'topic1': [99]},
)
assert mock_func.call_count == 2
示例6: test__release_retry
# 需要導入模塊: from kafka import common [as 別名]
# 或者: from kafka.common import KafkaUnavailableError [as 別名]
def test__release_retry(self, cluster):
config = KafkaConsumerConfig(
self.group,
cluster,
auto_commit_enable=True
)
consumer = KafkaConsumerGroup([], config)
mock_consumer = mock.Mock()
mock_consumer.set_topic_partitions.side_effect = KafkaUnavailableError
consumer.consumer = mock_consumer
with pytest.raises(KafkaUnavailableError):
consumer._release({})
assert mock_consumer.set_topic_partitions.call_count == 2
示例7: test_get_kafka_topics_recover_from_error
# 需要導入模塊: from kafka import common [as 別名]
# 或者: from kafka.common import KafkaUnavailableError [as 別名]
def test_get_kafka_topics_recover_from_error():
expected = {
'topic1': [0, 1, 2, 3],
'topic2': [0, 1]
}
mock_client = mock.Mock()
mock_client.topic_partitions = expected
mock_client.load_metadata_for_topics.side_effect = [KafkaUnavailableError(), None]
actual = utils.get_kafka_topics(mock_client)
assert expected == actual
示例8: test_get_kafka_topics_error
# 需要導入模塊: from kafka import common [as 別名]
# 或者: from kafka.common import KafkaUnavailableError [as 別名]
def test_get_kafka_topics_error():
expected = {
'topic1': [0, 1, 2, 3],
'topic2': [0, 1]
}
mock_client = mock.Mock()
mock_client.topic_partitions = expected
mock_client.load_metadata_for_topics.side_effect = KafkaUnavailableError('Boom!')
with pytest.raises(KafkaUnavailableError):
utils.get_kafka_topics(mock_client)
示例9: get_kafka_topics
# 需要導入模塊: from kafka import common [as 別名]
# 或者: from kafka.common import KafkaUnavailableError [as 別名]
def get_kafka_topics(kafkaclient):
"""Connect to kafka and fetch all the topics/partitions."""
try:
kafkaclient.load_metadata_for_topics()
except KafkaUnavailableError:
# Sometimes the kafka server closes the connection for inactivity
# in this case the second call should succeed otherwise the kafka
# server is down and we should fail
log.debug("First call to kafka for loading metadata failed."
" Trying again.")
kafkaclient.load_metadata_for_topics()
return kafkaclient.topic_partitions
示例10: retry_if_kafka_unavailable_error
# 需要導入模塊: from kafka import common [as 別名]
# 或者: from kafka.common import KafkaUnavailableError [as 別名]
def retry_if_kafka_unavailable_error(exception):
"""Returns true if the exception is of type KafkaUnavailableError
:param: exception: the exception to be checked
:returns boolean
"""
return isinstance(exception, KafkaUnavailableError)
示例11: _connect
# 需要導入模塊: from kafka import common [as 別名]
# 或者: from kafka.common import KafkaUnavailableError [as 別名]
def _connect(self):
connection = "{0}:{1}".format(self.host, self.port)
logging.info("Connecting to Kafka at %s...", connection)
try:
self.consumer = KafkaConsumer(self.topic,
group_id=self.group,
bootstrap_servers=[connection]
)
except KafkaUnavailableError as e:
raise EncoderError(e)
示例12: run
# 需要導入模塊: from kafka import common [as 別名]
# 或者: from kafka.common import KafkaUnavailableError [as 別名]
def run(cls, args, cluster_config):
# Setup the Kafka client
client = KafkaToolClient(cluster_config.broker_list)
client.load_metadata_for_topics()
topics_dict = cls.preprocess_args(
groupid=args.groupid,
topic=args.topic,
partitions=args.partitions,
cluster_config=cluster_config,
client=client,
use_admin_client=args.use_admin_client,
)
try:
consumer_offsets_metadata = get_consumer_offsets_metadata(
client,
args.groupid,
topics_dict,
)
except KafkaUnavailableError:
print(
"Error: Encountered error with Kafka, please try again later.",
file=sys.stderr,
)
raise
# Warn the user if a topic being subscribed to does not exist in Kafka.
for topic in topics_dict:
if topic not in consumer_offsets_metadata:
print(
"Warning: Topic {topic} does not exist in Kafka"
.format(topic=topic),
file=sys.stderr,
)
cls.save_offsets(
consumer_offsets_metadata,
topics_dict,
args.json_file,
args.groupid,
)
client.close()
示例13: get_consumer_offsets_metadata
# 需要導入模塊: from kafka import common [as 別名]
# 或者: from kafka.common import KafkaUnavailableError [as 別名]
def get_consumer_offsets_metadata(
kafka_client,
group,
topics,
raise_on_error=True,
):
"""This method:
* refreshes metadata for the kafka client
* fetches group offsets
* fetches watermarks
:param kafka_client: KafkaToolClient instance
:param group: group id
:param topics: list of topics
:param raise_on_error: if False the method ignores missing topics and
missing partitions. It still may fail on the request send.
:returns: dict <topic>: [ConsumerPartitionOffsets]
"""
# Refresh client metadata. We do not use the topic list, because we
# don't want to accidentally create the topic if it does not exist.
# If Kafka is unavailable, let's retry loading client metadata
try:
kafka_client.load_metadata_for_topics()
except KafkaUnavailableError:
kafka_client.load_metadata_for_topics()
group_offsets = get_current_consumer_offsets(
kafka_client, group, topics, raise_on_error
)
watermarks = get_topics_watermarks(
kafka_client, topics, raise_on_error
)
result = {}
for topic, partitions in six.iteritems(group_offsets):
result[topic] = [
ConsumerPartitionOffsets(
topic=topic,
partition=partition,
current=group_offsets[topic][partition],
highmark=watermarks[topic][partition].highmark,
lowmark=watermarks[topic][partition].lowmark,
) for partition in partitions
]
return result
示例14: get_consumer_offsets_metadata
# 需要導入模塊: from kafka import common [as 別名]
# 或者: from kafka.common import KafkaUnavailableError [as 別名]
def get_consumer_offsets_metadata(
kafka_client,
group,
topics,
raise_on_error=True,
offset_storage='zookeeper',
):
"""This method:
* refreshes metadata for the kafka client
* fetches group offsets
* fetches watermarks
:param kafka_client: KafkaClient instance
:param group: group id
:param topics: list of topics
:param raise_on_error: if False the method ignores missing topics and
missing partitions. It still may fail on the request send.
:param offset_storage: String, one of {zookeeper, kafka}.
:returns: dict <topic>: [ConsumerPartitionOffsets]
"""
# Refresh client metadata. We do now use the topic list, because we
# don't want to accidentally create the topic if it does not exist.
# If Kafka is unavailable, let's retry loading client metadata (YELPKAFKA-30)
try:
kafka_client.load_metadata_for_topics()
except KafkaUnavailableError:
kafka_client.load_metadata_for_topics()
group_offsets = get_current_consumer_offsets(
kafka_client, group, topics, raise_on_error, offset_storage
)
watermarks = get_topics_watermarks(
kafka_client, topics, raise_on_error
)
result = {}
for topic, partitions in six.iteritems(group_offsets):
result[topic] = [
ConsumerPartitionOffsets(
topic=topic,
partition=partition,
current=group_offsets[topic][partition],
highmark=watermarks[topic][partition].highmark,
lowmark=watermarks[topic][partition].lowmark,
) for partition in partitions
]
return result