本文整理匯總了Python中json_tricks.load方法的典型用法代碼示例。如果您正苦於以下問題:Python json_tricks.load方法的具體用法?Python json_tricks.load怎麽用?Python json_tricks.load使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類json_tricks
的用法示例。
在下文中一共展示了json_tricks.load方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: load_pickle
# 需要導入模塊: import json_tricks [as 別名]
# 或者: from json_tricks import load [as 別名]
def load_pickle(file, encoding=None):
"""Load a pickle file.
Args:
file (str): Path to pickle file
Returns:
object: Loaded object from pickle file
"""
# TODO: test set encoding='latin1' for 2/3 incompatibility
if encoding:
with open(file, 'rb') as f:
return pickle.load(f, encoding=encoding)
with open(file, 'rb') as f:
return pickle.load(f)
示例2: _write_coco_keypoint_results
# 需要導入模塊: import json_tricks [as 別名]
# 或者: from json_tricks import load [as 別名]
def _write_coco_keypoint_results(self, keypoints, res_file):
data_pack = [
{
'cat_id': 1, # 1 == 'person'
'cls': 'person',
'ann_type': 'keypoints',
'keypoints': keypoints
}
]
results = self._coco_keypoint_results_one_category_kernel(data_pack[0])
with open(res_file, 'w') as f:
json.dump(results, f, sort_keys=True, indent=4)
try:
json.load(open(res_file))
except Exception:
content = []
with open(res_file, 'r') as f:
for line in f:
content.append(line)
content[-1] = ']'
with open(res_file, 'w') as f:
for c in content:
f.write(c)
示例3: _write_coco_keypoint_results
# 需要導入模塊: import json_tricks [as 別名]
# 或者: from json_tricks import load [as 別名]
def _write_coco_keypoint_results(self, keypoints, res_file):
data_pack = [{'cat_id': self._class_to_coco_ind[cls],
'cls_ind': cls_ind,
'cls': cls,
'ann_type': 'keypoints',
'keypoints': keypoints
}
for cls_ind, cls in enumerate(self.classes) if not cls == '__background__']
results = self._coco_keypoint_results_one_category_kernel(data_pack[0])
logger.info('=> Writing results json to %s' % res_file)
with open(res_file, 'w') as f:
json.dump(results, f, sort_keys=True, indent=4)
try:
json.load(open(res_file))
except Exception:
content = []
with open(res_file, 'r') as f:
for line in f:
content.append(line)
content[-1] = ']'
with open(res_file, 'w') as f:
for c in content:
f.write(c)
示例4: open_model
# 需要導入模塊: import json_tricks [as 別名]
# 或者: from json_tricks import load [as 別名]
def open_model(file_name):
""" open a file and populate an optical model with the data
Args:
file_name (str): a filename of a supported file type
- .roa - a rayoptics JSON encoded file
- .seq - a CODE V (TM) sequence file
Returns:
if successful, an OpticalModel instance, otherwise, None
"""
file_extension = os.path.splitext(file_name)[1]
opm = None
if file_extension == '.seq':
opm = cvp.read_lens(file_name)
create_specsheet_from_model(opm)
elif file_extension == '.roa':
with open(file_name, 'r') as f:
obj_dict = json_tricks.load(f)
if 'optical_model' in obj_dict:
opm = obj_dict['optical_model']
opm.sync_to_restore()
return opm
示例5: __init__
# 需要導入模塊: import json_tricks [as 別名]
# 或者: from json_tricks import load [as 別名]
def __init__(self, cfg, root, image_set, is_train, transform=None):
super().__init__(cfg, root, image_set, is_train, transform)
self.num_joints = 16
self.flip_pairs = [[0, 5], [1, 4], [2, 3], [10, 15], [11, 14], [12, 13]]
self.parent_ids = [1, 2, 6, 6, 3, 4, 6, 6, 7, 8, 11, 12, 7, 7, 13, 14]
self.upper_body_ids = (7, 8, 9, 10, 11, 12, 13, 14, 15)
self.lower_body_ids = (0, 1, 2, 3, 4, 5, 6)
self.db = self._get_db()
if is_train and cfg.DATASET.SELECT_DATA:
self.db = self.select_data(self.db)
logger.info('=> load {} samples'.format(len(self.db)))
示例6: _write_coco_keypoint_results
# 需要導入模塊: import json_tricks [as 別名]
# 或者: from json_tricks import load [as 別名]
def _write_coco_keypoint_results(self, keypoints, res_file):
data_pack = [
{
'cat_id': self._class_to_coco_ind[cls],
'cls_ind': cls_ind,
'cls': cls,
'ann_type': 'keypoints',
'keypoints': keypoints
}
for cls_ind, cls in enumerate(self.classes) if not cls == '__background__'
]
results = self._coco_keypoint_results_one_category_kernel(data_pack[0])
logger.info('=> writing results json to %s' % res_file)
with open(res_file, 'w') as f:
json.dump(results, f, sort_keys=True, indent=4)
try:
json.load(open(res_file))
except Exception:
content = []
with open(res_file, 'r') as f:
for line in f:
content.append(line)
content[-1] = ']'
with open(res_file, 'w') as f:
for c in content:
f.write(c)
示例7: load_json
# 需要導入模塊: import json_tricks [as 別名]
# 或者: from json_tricks import load [as 別名]
def load_json(file, new_root_dir=None, decompression=False):
"""Load a JSON file using json_tricks"""
if decompression:
with open(file, 'rb') as f:
my_object = load(f, decompression=decompression)
else:
with open(file, 'r') as f:
my_object = load(f, decompression=decompression)
if new_root_dir:
my_object.root_dir = new_root_dir
return my_object
示例8: _write_coco_keypoint_results
# 需要導入模塊: import json_tricks [as 別名]
# 或者: from json_tricks import load [as 別名]
def _write_coco_keypoint_results(self, keypoints, res_file):
data_pack = [
{
'cat_id': self._class_to_coco_ind[cls],
'cls_ind': cls_ind,
'cls': cls,
'ann_type': 'keypoints',
'keypoints': keypoints
}
for cls_ind, cls in enumerate(self.classes) if not cls == '__background__'
]
results = self._coco_keypoint_results_one_category_kernel(data_pack[0])
logger.info('=> Writing results json to %s' % res_file)
with open(res_file, 'w') as f:
json.dump(results, f, sort_keys=True, indent=4)
try:
json.load(open(res_file))
except Exception:
content = []
with open(res_file, 'r') as f:
for line in f:
content.append(line)
content[-1] = ']'
with open(res_file, 'w') as f:
for c in content:
f.write(c)
示例9: __init__
# 需要導入模塊: import json_tricks [as 別名]
# 或者: from json_tricks import load [as 別名]
def __init__(self, cfg, root, image_set, is_train, transform=None):
super().__init__(cfg, root, image_set, is_train, transform)
self.num_joints = 16
self.flip_pairs = [[0, 5], [1, 4], [2, 3], [10, 15], [11, 14], [12, 13]]
self.parent_ids = [1, 2, 6, 6, 3, 4, 6, 6, 7, 8, 11, 12, 7, 7, 13, 14]
self.db = self._get_db()
if is_train and cfg.DATASET.SELECT_DATA:
self.db = self.select_data(self.db)
logger.info('=> load {} samples'.format(len(self.db)))
示例10: video2filenames
# 需要導入模塊: import json_tricks [as 別名]
# 或者: from json_tricks import load [as 別名]
def video2filenames(annot_dir):
pathtodir = annot_dir
mat_files = [f for f in os.listdir(pathtodir) if
osp.isfile(osp.join(pathtodir, f)) and '.mat' in f]
json_files = [f for f in os.listdir(pathtodir) if
osp.isfile(osp.join(pathtodir, f)) and '.json' in f]
if len(json_files) > 1:
files = json_files
ext_types = '.json'
else:
files = mat_files
ext_types = '.mat'
output = {}
L = {}
files = [f for f in os.listdir(pathtodir) if
osp.isfile(osp.join(pathtodir, f)) and ext_types in f]
for fname in files:
if ext_types == '.mat':
out_fname = fname.replace('.mat', '.json')
data = sio.loadmat(
osp.join(pathtodir, fname), squeeze_me=True,
struct_as_record=False)
temp = data['annolist'][0].image.name
data2 = sio.loadmat(osp.join(pathtodir, fname))
num_frames = len(data2['annolist'][0])
elif ext_types == '.json':
out_fname = fname
with open(osp.join(pathtodir, fname), 'r') as fin:
data = json.load(fin)
if 'annolist' in data:
temp = data['annolist'][0]['image'][0]['name']
num_frames = len(data['annolist'])
else:
temp = data['images'][0]['file_name']
num_frames = data['images'][0]['nframes']
else:
raise NotImplementedError()
video = osp.dirname(temp)
output[video] = out_fname
L[video] = num_frames
return output, L
示例11: _load_posetrack_person_detection_results
# 需要導入模塊: import json_tricks [as 別名]
# 或者: from json_tricks import load [as 別名]
def _load_posetrack_person_detection_results(self):
all_boxes = None
with open(self.bbox_file, 'r') as f:
all_boxes = json.load(f)
if not all_boxes:
logger.error('=> Load %s fail!' % self.bbox_file)
return None
logger.info('=> Total boxes: {}'.format(len(all_boxes)))
kpt_db = []
num_boxes = 0
for n_img in range(0, len(all_boxes)):
det_res = all_boxes[n_img]
if det_res['category_id'] != 1:
continue
#img_name = self.image_path_from_index(det_res['image_id'])
img_name = det_res['image_name']
box = det_res['bbox']
score = det_res['score']
nframes = det_res['nframes']
frame_id = det_res['frame_id']
if score < self.image_thre:
continue
num_boxes = num_boxes + 1
center, scale = self._box2cs(box)
joints_3d = np.zeros((self.num_joints, 3), dtype=np.float)
joints_3d_vis = np.ones(
(self.num_joints, 3), dtype=np.float)
kpt_db.append({
'image': self.img_dir + img_name,
'center': center,
'scale': scale,
'score': score,
'joints_3d': joints_3d,
'joints_3d_vis': joints_3d_vis,
'nframes': nframes,
'frame_id': frame_id,
})
logger.info('=> Total boxes after fliter low score@{}: {}'.format(
self.image_thre, num_boxes))
return kpt_db
示例12: video2filenames
# 需要導入模塊: import json_tricks [as 別名]
# 或者: from json_tricks import load [as 別名]
def video2filenames(annot_dir):
pathtodir = annot_dir
output = {}
L = {}
mat_files = [f for f in os.listdir(pathtodir) if
osp.isfile(osp.join(pathtodir, f)) and '.mat' in f]
json_files = [f for f in os.listdir(pathtodir) if
osp.isfile(osp.join(pathtodir, f)) and '.json' in f]
if len(json_files) > 1:
files = json_files
ext_types = '.json'
else:
files = mat_files
ext_types = '.mat'
for fname in files:
if ext_types == '.mat':
out_fname = fname.replace('.mat', '.json')
data = sio.loadmat(
osp.join(pathtodir, fname), squeeze_me=True,
struct_as_record=False)
temp = data['annolist'][0].image.name
data2 = sio.loadmat(osp.join(pathtodir, fname))
num_frames = len(data2['annolist'][0])
elif ext_types == '.json':
out_fname = fname
with open(osp.join(pathtodir, fname), 'r') as fin:
data = json.load(fin)
if 'annolist' in data:
temp = data['annolist'][0]['image'][0]['name']
num_frames = len(data['annolist'])
else:
temp = data['images'][0]['file_name']
num_frames = data['images'][0]['nframes']
else:
raise NotImplementedError()
video = osp.dirname(temp)
output[video] = out_fname
L[video] = num_frames
return output, L
示例13: _load_posetrack_person_detection_results
# 需要導入模塊: import json_tricks [as 別名]
# 或者: from json_tricks import load [as 別名]
def _load_posetrack_person_detection_results(self):
all_boxes = None
with open(self.bbox_file, 'r') as f:
all_boxes = json.load(f)
if not all_boxes:
logger.error('=> Load %s fail!' % self.bbox_file)
return None
logger.info('=> Total boxes: {}'.format(len(all_boxes)))
kpt_db = []
num_boxes = 0
for n_img in range(0, len(all_boxes)):
det_res = all_boxes[n_img]
if det_res['category_id'] != 1:
continue
img_name = det_res['image_name']
box = det_res['bbox']
score = det_res['score']
nframes = det_res['nframes']
frame_id = det_res['frame_id']
if score < self.image_thre:
continue
num_boxes = num_boxes + 1
center, scale = self._box2cs(box)
joints_3d = np.zeros((self.num_joints, 3), dtype=np.float)
joints_3d_vis = np.ones(
(self.num_joints, 3), dtype=np.float)
kpt_db.append({
'image': self.img_dir + img_name,
'center': center,
'scale': scale,
'score': score,
'joints_3d': joints_3d,
'joints_3d_vis': joints_3d_vis,
'nframes': nframes,
'frame_id': frame_id,
})
logger.info('=> Total boxes after fliter low score@{}: {}'.format(
self.image_thre, num_boxes))
return kpt_db
示例14: __init__
# 需要導入模塊: import json_tricks [as 別名]
# 或者: from json_tricks import load [as 別名]
def __init__(self, opts, root, image_set, is_train, transform=None):
super().__init__(opts, root, image_set, is_train, transform)
self.nms_thre = 1.0#cfg.TEST.NMS_THRE
self.image_thre = 0.0#cfg.TEST.IMAGE_THRE
self.oks_thre = 0.9#cfg.TEST.OKS_THRE
self.in_vis_thre = 0.2#cfg.TEST.IN_VIS_THRE
self.bbox_file = opts.dataDir + '/person_detection_resuts/COCO_val2017_detections_AP_H_56_person.json'#cfg.TEST.COCO_BBOX_FILE
self.use_gt_bbox = True#cfg.TEST.USE_GT_BBOX
self.image_width = 256#cfg.MODEL.IMAGE_SIZE[0]
self.image_height = 256#cfg.MODEL.IMAGE_SIZE[1]
self.aspect_ratio = self.image_width * 1.0 / self.image_height
self.pixel_std = 200
self.coco = COCO(self._get_ann_file_keypoint())
# deal with class names
cats = [cat['name']
for cat in self.coco.loadCats(self.coco.getCatIds())]
self.classes = ['__background__'] + cats
logger.info('=> classes: {}'.format(self.classes))
self.num_classes = len(self.classes)
self._class_to_ind = dict(zip(self.classes, range(self.num_classes)))
self._class_to_coco_ind = dict(zip(cats, self.coco.getCatIds()))
self._coco_ind_to_class_ind = dict([(self._class_to_coco_ind[cls],
self._class_to_ind[cls])
for cls in self.classes[1:]])
# load image file names
self.image_set_index = self._load_image_set_index()
self.num_images = len(self.image_set_index)
logger.info('=> num_images: {}'.format(self.num_images))
self.num_joints = 17
self.flip_pairs = [[1, 2], [3, 4], [5, 6], [7, 8],
[9, 10], [11, 12], [13, 14], [15, 16]]
self.parent_ids = None
self.db = self._get_db()
if is_train and None:#cfg.DATASET.SELECT_DATA:
self.db = self.select_data(self.db)
logger.info('=> load {} samples'.format(len(self.db)))
示例15: _load_coco_person_detection_results
# 需要導入模塊: import json_tricks [as 別名]
# 或者: from json_tricks import load [as 別名]
def _load_coco_person_detection_results(self):
all_boxes = None
with open(self.bbox_file, 'r') as f:
all_boxes = json.load(f)
if not all_boxes:
logger.error('=> Load %s fail!' % self.bbox_file)
return None
logger.info('=> Total boxes: {}'.format(len(all_boxes)))
kpt_db = []
num_boxes = 0
for n_img in range(0, len(all_boxes)):
det_res = all_boxes[n_img]
if det_res['category_id'] != 1:
continue
img_name = self.image_path_from_index(det_res['image_id'])
box = det_res['bbox']
score = det_res['score']
if score < self.image_thre:
continue
num_boxes = num_boxes + 1
center, scale = self._box2cs(box)
joints_3d = np.zeros((self.num_joints, 3), dtype=np.float)
joints_3d_vis = np.ones(
(self.num_joints, 3), dtype=np.float)
kpt_db.append({
'image': img_name,
'center': center,
'scale': scale,
'score': score,
'joints_3d': joints_3d,
'joints_3d_vis': joints_3d_vis,
})
logger.info('=> Total boxes after fliter low score@{}: {}'.format(
self.image_thre, num_boxes))
return kpt_db
# need double check this API and classes field