當前位置: 首頁>>代碼示例>>Python>>正文


Python json5.dump方法代碼示例

本文整理匯總了Python中json5.dump方法的典型用法代碼示例。如果您正苦於以下問題:Python json5.dump方法的具體用法?Python json5.dump怎麽用?Python json5.dump使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在json5的用法示例。


在下文中一共展示了json5.dump方法的7個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: build_model

# 需要導入模塊: import json5 [as 別名]
# 或者: from json5 import dump [as 別名]
def build_model(self):
        states = {}
        interface = Interface(self.args, self.log)
        self.log(f'#classes: {self.args.num_classes}; #vocab: {self.args.num_vocab}')
        if self.args.seed:
            random.seed(self.args.seed)
            torch.manual_seed(self.args.seed)
            if self.args.cuda:
                torch.cuda.manual_seed(self.args.seed)
            if self.args.deterministic:
                torch.backends.cudnn.deterministic = True

        model = Model(self.args)
        if self.args.pretrained_embeddings:
            embeddings = interface.load_embeddings()
            model.set_embeddings(embeddings)

        # set initial states
        states['start_epoch'] = 1
        states['best_eval'] = 0.
        states['best_epoch'] = 0
        states['best_step'] = 0

        self.log(f'trainable params: {model.num_parameters():,d}')
        self.log(f'trainable params (exclude embeddings): {model.num_parameters(exclude_embed=True):,d}')
        validate_params(self.args)
        with open(os.path.join(self.args.summary_dir, 'args.json5'), 'w') as f:
            json5.dump(self.args.__dict__, f, indent=2)
        self.log(pformat(vars(self.args), indent=2, width=120))
        return model, interface, states 
開發者ID:alibaba-edu,項目名稱:simple-effective-text-matching-pytorch,代碼行數:32,代碼來源:trainer.py

示例2: build_model

# 需要導入模塊: import json5 [as 別名]
# 或者: from json5 import dump [as 別名]
def build_model(self, sess):
        states = {}
        interface = Interface(self.args, self.log)
        self.log(f'#classes: {self.args.num_classes}; #vocab: {self.args.num_vocab}')
        if self.args.seed:
            random.seed(self.args.seed)
            np.random.seed(self.args.seed)
            tf.set_random_seed(self.args.seed)

        model = Model(self.args, sess)
        sess.run(tf.global_variables_initializer())
        embeddings = interface.load_embeddings()
        model.set_embeddings(sess, embeddings)

        # set initial states
        states['start_epoch'] = 1
        states['best_eval'] = 0.
        states['best_epoch'] = 0
        states['best_step'] = 0

        self.log(f'trainable params: {model.num_parameters():,d}')
        self.log(f'trainable params (exclude embeddings): {model.num_parameters(exclude_embed=True):,d}')
        validate_params(self.args)
        with open(os.path.join(self.args.summary_dir, 'args.json5'), 'w') as f:
            args = {k: v for k, v in vars(self.args).items() if not k.startswith('_')}
            json5.dump(args, f, indent=2)
        self.log(pformat(vars(self.args), indent=2, width=120))
        return model, interface, states 
開發者ID:alibaba-edu,項目名稱:simple-effective-text-matching,代碼行數:30,代碼來源:trainer.py

示例3: test_basic

# 需要導入模塊: import json5 [as 別名]
# 或者: from json5 import dump [as 別名]
def test_basic(self):
        sio = io.StringIO()
        json5.dump(True, sio)
        self.assertEqual('true', sio.getvalue()) 
開發者ID:dpranke,項目名稱:pyjson5,代碼行數:6,代碼來源:lib_test.py

示例4: _post_process

# 需要導入模塊: import json5 [as 別名]
# 或者: from json5 import dump [as 別名]
def _post_process(args: Object):
    if not args.output_dir.startswith('models'):
        args.output_dir = os.path.join('models', args.output_dir)
    os.makedirs(args.output_dir, exist_ok=True)
    if not args.name:
        args.name = str(datetime.now())
    args.summary_dir = os.path.join(args.output_dir, args.name)
    if os.path.exists(args.summary_dir):
        shutil.rmtree(args.summary_dir)
    os.makedirs(args.summary_dir)
    data_config_file = os.path.join(args.output_dir, 'data_config.json5')
    if os.path.exists(data_config_file):
        with open(data_config_file) as f:
            config = json5.load(f)
            for k, v in config.items():
                if not hasattr(args, k) or getattr(args, k) != v:
                    print('ERROR: Data configurations are different. Please use another output_dir or '
                          'remove the older one manually.')
                    exit()
    else:
        with open(data_config_file, 'w') as f:
            keys = ['data_dir', 'min_df', 'max_vocab', 'max_len', 'min_len', 'lower_case',
                    'pretrained_embeddings', 'embedding_mode']
            json5.dump({k: getattr(args, k) for k in keys}, f)
    args.metric = args.metric.lower()
    args.watch_metrics = [m.lower() for m in args.watch_metrics]
    if args.metric not in args.watch_metrics:
        args.watch_metrics.append(args.metric)
    args.cuda = args.cuda and torch.cuda.is_available()
    args.fix_embeddings = args.pretrained_embeddings and args.fix_embeddings

    def samples2steps(n):
        return int(math.ceil(n / args.batch_size))

    if not hasattr(args, 'log_per_updates'):
        args.log_per_updates = samples2steps(args.log_per_samples)
    if not hasattr(args, 'eval_per_updates'):
        args.eval_per_updates = samples2steps(args.eval_per_samples)
    if not hasattr(args, 'eval_per_updates_warmup'):
        args.eval_per_updates_warmup = samples2steps(args.eval_per_samples_warmup)
    if not hasattr(args, 'eval_warmup_steps'):
        args.eval_warmup_steps = samples2steps(args.eval_warmup_samples)
    if not hasattr(args, 'min_steps'):
        args.min_steps = samples2steps(args.min_samples)
    if not hasattr(args, 'early_stopping'):
        args.early_stopping = samples2steps(args.tolerance_samples)
    if not hasattr(args, 'lr_warmup_steps'):
        args.lr_warmup_steps = samples2steps(args.lr_warmup_samples)
    if not hasattr(args, 'lr_decay_steps'):
        args.lr_decay_steps = samples2steps(args.lr_decay_samples)
    if not hasattr(args, 'summary_per_updates'):
        args.summary_per_updates = args.summary_per_logs * args.log_per_updates
    assert args.lr >= args.min_lr, 'initial learning rate must be larger than min_lr' 
開發者ID:alibaba-edu,項目名稱:simple-effective-text-matching-pytorch,代碼行數:55,代碼來源:params.py

示例5: __init__

# 需要導入模塊: import json5 [as 別名]
# 或者: from json5 import dump [as 別名]
def __init__(self, config, resume, model, optimizer, loss_function):
        self.n_gpu = torch.cuda.device_count()
        self.device = self._prepare_device(self.n_gpu, cudnn_deterministic=config["cudnn_deterministic"])

        self.model = model.to(self.device)

        if self.n_gpu > 1:
            self.model = torch.nn.DataParallel(self.model, device_ids=list(range(self.n_gpu)))

        self.optimizer = optimizer

        self.loss_function = loss_function

        # Trainer
        self.epochs = config["trainer"]["epochs"]
        self.save_checkpoint_interval = config["trainer"]["save_checkpoint_interval"]
        self.validation_config = config["trainer"]["validation"]
        self.validation_interval = self.validation_config["interval"]
        self.find_max = self.validation_config["find_max"]
        self.validation_custom_config = self.validation_config["custom"]

        self.start_epoch = 1
        self.best_score = -np.inf if self.find_max else np.inf
        self.root_dir = Path(config["root_dir"]) / config["experiment_name"]
        self.checkpoints_dir = self.root_dir / "checkpoints"
        self.logs_dir = self.root_dir / "logs"
        prepare_empty_dir([self.checkpoints_dir, self.logs_dir], resume=resume)

        self.writer = visualization.writer(self.logs_dir.as_posix())
        self.writer.add_text(
            tag="Configuration",
            text_string=f"<pre>  \n{json5.dumps(config, indent=4, sort_keys=False)}  \n</pre>",
            global_step=1
        )

        if resume: self._resume_checkpoint()

        print("Configurations are as follows: ")
        print(json5.dumps(config, indent=2, sort_keys=False))

        with open((self.root_dir / f"{time.strftime('%Y-%m-%d-%H-%M-%S')}.json").as_posix(), "w") as handle:
            json5.dump(config, handle, indent=2, sort_keys=False)

        self._print_networks([self.model]) 
開發者ID:haoxiangsnr,項目名稱:IRM-based-Speech-Enhancement-using-LSTM,代碼行數:46,代碼來源:base_trainer.py

示例6: _post_process

# 需要導入模塊: import json5 [as 別名]
# 或者: from json5 import dump [as 別名]
def _post_process(args: Object):
    if not args.output_dir.startswith('models'):
        args.output_dir = os.path.join('models', args.output_dir)
    os.makedirs(args.output_dir, exist_ok=True)
    if not args.name:
        args.name = str(datetime.now())
    args.summary_dir = os.path.join(args.output_dir, args.name)
    if os.path.exists(args.summary_dir):
        shutil.rmtree(args.summary_dir)
    os.makedirs(args.summary_dir)
    data_config_file = os.path.join(args.output_dir, 'data_config.json5')
    if os.path.exists(data_config_file):
        with open(data_config_file) as f:
            config = json5.load(f)
            for k, v in config.items():
                if not hasattr(args, k) or getattr(args, k) != v:
                    print('ERROR: Data configurations are different. Please use another output_dir or '
                          'remove the older one manually.')
                    exit()
    else:
        with open(data_config_file, 'w') as f:
            keys = ['data_dir', 'min_df', 'max_vocab', 'max_len', 'min_len', 'lower_case',
                    'pretrained_embeddings', 'embedding_mode']
            json5.dump({k: getattr(args, k) for k in keys}, f)
    args.metric = args.metric.lower()
    args.watch_metrics = [m.lower() for m in args.watch_metrics]
    if args.metric not in args.watch_metrics:
        args.watch_metrics.append(args.metric)
    assert args.pretrained_embeddings, 'pretrained embeddings must be provided.'

    def samples2steps(n):
        return int(math.ceil(n / args.batch_size))

    if not hasattr(args, 'log_per_updates'):
        args.log_per_updates = samples2steps(args.log_per_samples)
    if not hasattr(args, 'eval_per_updates'):
        args.eval_per_updates = samples2steps(args.eval_per_samples)
    if not hasattr(args, 'eval_per_updates_warmup'):
        args.eval_per_updates_warmup = samples2steps(args.eval_per_samples_warmup)
    if not hasattr(args, 'eval_warmup_steps'):
        args.eval_warmup_steps = samples2steps(args.eval_warmup_samples)
    if not hasattr(args, 'min_steps'):
        args.min_steps = samples2steps(args.min_samples)
    if not hasattr(args, 'early_stopping'):
        args.early_stopping = samples2steps(args.tolerance_samples)
    if not hasattr(args, 'lr_warmup_steps'):
        args.lr_warmup_steps = samples2steps(args.lr_warmup_samples)
    if not hasattr(args, 'lr_decay_steps'):
        args.lr_decay_steps = samples2steps(args.lr_decay_samples) 
開發者ID:alibaba-edu,項目名稱:simple-effective-text-matching,代碼行數:51,代碼來源:params.py

示例7: __init__

# 需要導入模塊: import json5 [as 別名]
# 或者: from json5 import dump [as 別名]
def __init__(self,
                 config,
                 resume: bool,
                 model,
                 loss_function,
                 optimizer):
        self.n_gpu = torch.cuda.device_count()
        self.device = self._prepare_device(self.n_gpu, cudnn_deterministic=config["cudnn_deterministic"])

        self.optimizer = optimizer
        self.loss_function = loss_function

        self.model = model.to(self.device)

        if self.n_gpu > 1:
            self.model = torch.nn.DataParallel(self.model, device_ids=list(range(self.n_gpu)))

        # Trainer
        self.epochs = config["trainer"]["epochs"]
        self.save_checkpoint_interval = config["trainer"]["save_checkpoint_interval"]
        self.validation_config = config["trainer"]["validation"]
        self.validation_interval = self.validation_config["interval"]
        self.find_max = self.validation_config["find_max"]
        self.validation_custom_config = self.validation_config["custom"]

        # The following args is not in the config file. We will update it if the resume is True in later.
        self.start_epoch = 1
        self.best_score = -np.inf if self.find_max else np.inf
        self.root_dir = Path(config["root_dir"]).expanduser().absolute() / config["experiment_name"]
        self.checkpoints_dir = self.root_dir / "checkpoints"
        self.logs_dir = self.root_dir / "logs"
        prepare_empty_dir([self.checkpoints_dir, self.logs_dir], resume=resume)

        self.writer = visualization.writer(self.logs_dir.as_posix())
        self.writer.add_text(
            tag="Configuration",
            text_string=f"<pre>  \n{json5.dumps(config, indent=4, sort_keys=False)}  \n</pre>",
            global_step=1
        )

        if resume: self._resume_checkpoint()

        print("Configurations are as follows: ")
        print(json5.dumps(config, indent=2, sort_keys=False))

        with open((self.root_dir / f"{time.strftime('%Y-%m-%d-%H-%M-%S')}.json").as_posix(), "w") as handle:
            json5.dump(config, handle, indent=2, sort_keys=False)

        self._print_networks([self.model]) 
開發者ID:haoxiangsnr,項目名稱:Wave-U-Net-for-Speech-Enhancement,代碼行數:51,代碼來源:base_trainer.py


注:本文中的json5.dump方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。