本文整理匯總了Python中json.dump方法的典型用法代碼示例。如果您正苦於以下問題:Python json.dump方法的具體用法?Python json.dump怎麽用?Python json.dump使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類json
的用法示例。
在下文中一共展示了json.dump方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _write_coco_results_file
# 需要導入模塊: import json [as 別名]
# 或者: from json import dump [as 別名]
def _write_coco_results_file(self, all_boxes, res_file):
# [{"image_id": 42,
# "category_id": 18,
# "bbox": [258.15,41.29,348.26,243.78],
# "score": 0.236}, ...]
results = []
for cls_ind, cls in enumerate(self.classes):
if cls == '__background__':
continue
print('Collecting {} results ({:d}/{:d})'.format(cls, cls_ind,
self.num_classes - 1))
coco_cat_id = self._class_to_coco_cat_id[cls]
results.extend(self._coco_results_one_category(all_boxes[cls_ind],
coco_cat_id))
print('Writing results json to {}'.format(res_file))
with open(res_file, 'w') as fid:
json.dump(results, fid)
開發者ID:Sunarker,項目名稱:Collaborative-Learning-for-Weakly-Supervised-Object-Detection,代碼行數:19,代碼來源:coco.py
示例2: save_eval_file
# 需要導入模塊: import json [as 別名]
# 或者: from json import dump [as 別名]
def save_eval_file(opt, stats, eval_type="losses", split="dev", ext="pickle"):
if cfg.test_save:
name = "{}/{}.{}".format(utils.make_name(
opt, prefix="garbage/{}/".format(eval_type),
is_dir=True, eval_=True), split, ext)
else:
name = "{}/{}.{}".format(utils.make_name(
opt, prefix="results/{}/".format(eval_type),
is_dir=True, eval_=True), split, ext)
print("Saving {} {} to {}".format(split, eval_type, name))
if ext == "pickle":
with open(name, "wb") as f:
pickle.dump(stats, f)
elif ext == "txt":
with open(name, "w") as f:
f.write(stats)
elif ext == "json":
with open(name, "w") as f:
json.dump(stats, f)
else:
raise
示例3: register
# 需要導入模塊: import json [as 別名]
# 或者: from json import dump [as 別名]
def register(self, name, serializer):
"""Register ``serializer`` object under ``name``.
Raises :class:`AttributeError` if ``serializer`` in invalid.
.. note::
``name`` will be used as the file extension of the saved files.
:param name: Name to register ``serializer`` under
:type name: ``unicode`` or ``str``
:param serializer: object with ``load()`` and ``dump()``
methods
"""
# Basic validation
getattr(serializer, 'load')
getattr(serializer, 'dump')
self._serializers[name] = serializer
示例4: cache_data
# 需要導入模塊: import json [as 別名]
# 或者: from json import dump [as 別名]
def cache_data(self, name, data):
"""Save ``data`` to cache under ``name``.
If ``data`` is ``None``, the corresponding cache file will be
deleted.
:param name: name of datastore
:param data: data to store. This may be any object supported by
the cache serializer
"""
serializer = manager.serializer(self.cache_serializer)
cache_path = self.cachefile('%s.%s' % (name, self.cache_serializer))
if data is None:
if os.path.exists(cache_path):
os.unlink(cache_path)
self.logger.debug('deleted cache file: %s', cache_path)
return
with atomic_writer(cache_path, 'wb') as file_obj:
serializer.dump(data, file_obj)
self.logger.debug('cached data: %s', cache_path)
示例5: gt_roidb
# 需要導入模塊: import json [as 別名]
# 或者: from json import dump [as 別名]
def gt_roidb(self):
"""
Return the database of ground-truth regions of interest.
This function loads/saves from/to a cache file to speed up future calls.
"""
cache_file = osp.join(self.cache_path, self.name + '_gt_roidb.pkl')
if osp.exists(cache_file):
with open(cache_file, 'rb') as fid:
roidb = pickle.load(fid)
print('{} gt roidb loaded from {}'.format(self.name, cache_file))
return roidb
gt_roidb = [self._load_coco_annotation(index)
for index in self._image_index]
with open(cache_file, 'wb') as fid:
pickle.dump(gt_roidb, fid, pickle.HIGHEST_PROTOCOL)
print('wrote gt roidb to {}'.format(cache_file))
return gt_roidb
開發者ID:Sunarker,項目名稱:Collaborative-Learning-for-Weakly-Supervised-Object-Detection,代碼行數:21,代碼來源:coco.py
示例6: savepb
# 需要導入模塊: import json [as 別名]
# 或者: from json import dump [as 別名]
def savepb(self):
"""
Create a standalone const graph def that
C++ can load and run.
"""
darknet_pb = self.to_darknet()
flags_pb = self.FLAGS
flags_pb.verbalise = False
flags_pb.train = False
# rebuild another tfnet. all const.
tfnet_pb = TFNet(flags_pb, darknet_pb)
tfnet_pb.sess = tf.Session(graph = tfnet_pb.graph)
# tfnet_pb.predict() # uncomment for unit testing
name = 'built_graph/{}.pb'.format(self.meta['name'])
os.makedirs(os.path.dirname(name), exist_ok=True)
#Save dump of everything in meta
with open('built_graph/{}.meta'.format(self.meta['name']), 'w') as fp:
json.dump(self.meta, fp)
self.say('Saving const graph def to {}'.format(name))
graph_def = tfnet_pb.sess.graph_def
tf.train.write_graph(graph_def,'./', name, False)
示例7: make_model_yaml
# 需要導入模塊: import json [as 別名]
# 或者: from json import dump [as 別名]
def make_model_yaml(template_yaml, model_json, output_yaml_path):
#
with open(template_yaml, 'r') as f:
model_yaml = yaml.load(f)
#
# get the model config:
json_file = open(model_json, 'r')
loaded_model_json = json_file.read()
json_file.close()
loaded_model = keras.models.model_from_json(loaded_model_json)
#
model_yaml["schema"]["targets"] = []
for oname, oshape in zip(loaded_model.output_names, loaded_model.output_shape):
append_el ={"name":oname , "shape":str(oshape)#replace("None,", "")
, "doc":"Methylation probability for %s"%oname}
model_yaml["schema"]["targets"].append(append_el)
#
with open(output_yaml_path, 'w') as f:
yaml.dump(model_yaml, f, default_flow_style=False)
示例8: make_secondary_dl_yaml
# 需要導入模塊: import json [as 別名]
# 或者: from json import dump [as 別名]
def make_secondary_dl_yaml(template_yaml, model_json, output_yaml_path):
with open(template_yaml, 'r') as f:
model_yaml = yaml.load(f)
#
# get the model config:
json_file = open(model_json, 'r')
loaded_model_json = json_file.read()
json_file.close()
loaded_model = keras.models.model_from_json(loaded_model_json)
#
model_yaml["output_schema"]["targets"] = []
for oname, oshape in zip(loaded_model.output_names, loaded_model.output_shape):
append_el ={"name":oname , "shape":str(oshape)#replace("None,", "")
, "doc":"Methylation probability for %s"%oname}
model_yaml["output_schema"]["targets"].append(append_el)
#
with open(output_yaml_path, 'w') as f:
yaml.dump(model_yaml, f, default_flow_style=False)
示例9: saverc
# 需要導入模塊: import json [as 別名]
# 或者: from json import dump [as 別名]
def saverc(filename, dat, overwrite=False):
'''
saverc(filename, d) saves the given configuration dictionary d to the given filename in JSON
format. If d is not a dictionary or if filename already exists or cannot be created, an error
is raised. This funciton does not create directories.
The optional argument overwrite (default: False) may be passed as True to overwrite files that
already exist.
'''
filename = os.path.expanduser(os.path.expandvars(filename))
if not overwrite and os.path.isfile(filename):
raise ValueError('Given filename %s already exists' % filename)
if not pimms.is_map(dat):
try: dat = dict(dat)
except Exception: raise ValueError('Given config data must be a dictionary')
with open(filename, 'w') as fl:
json.dump(dat, fl, sort_keys=True)
return filename
# the private class that handles all the details...
示例10: save_json
# 需要導入模塊: import json [as 別名]
# 或者: from json import dump [as 別名]
def save_json(filename, obj, normalize=True):
'''
save_json(filename, obj) writes the given object to the given filename (or stream) in a
normalized JSON format.
The optional argument normalize (default True) may be set to False to prevent the object from
being run through neuropythy's normalize system.
'''
from neuropythy.util import normalize as norm
dat = norm(obj) if normalize else obj
if pimms.is_str(filename):
jsonstr = json.dumps(dat)
if any(filename.endswith(s) for s in ('.gz', '.bz2', '.lzma')):
with gzip.open(filename, 'wt') as fl: fl.write(jsonstr)
else:
with open(filename, 'wt') as fl: fl.write(jsonstr)
else: json.dump(dat, filename)
return filename
示例11: _write_coco_results
# 需要導入模塊: import json [as 別名]
# 或者: from json import dump [as 別名]
def _write_coco_results(self, _coco, detections):
""" example results
[{"image_id": 42,
"category_id": 18,
"bbox": [258.15,41.29,348.26,243.78],
"score": 0.236}, ...]
"""
cats = [cat['name'] for cat in _coco.loadCats(_coco.getCatIds())]
class_to_coco_ind = dict(zip(cats, _coco.getCatIds()))
results = []
for cls_ind, cls in enumerate(self.classes):
if cls == '__background__':
continue
logger.info('collecting %s results (%d/%d)' % (cls, cls_ind, self.num_classes - 1))
coco_cat_id = class_to_coco_ind[cls]
results.extend(self._coco_results_one_category(detections[cls_ind], coco_cat_id))
logger.info('writing results json to %s' % self._result_file)
with open(self._result_file, 'w') as f:
json.dump(results, f, sort_keys=True, indent=4)
示例12: loadProxies
# 需要導入模塊: import json [as 別名]
# 或者: from json import dump [as 別名]
def loadProxies():
proxiesList = []
cprint("Loading proxies...","green")
site2(proxiesList) # load proxies
# proxiesList = ["13.85.80.251:443"]
# proxiesList = ["13.85.80.251:443"]
# proxiesList = ["144.217.16.78:3128"]
proxiesList = proxiesList[::-1]
proxiesList = proxiesList[:10]
proxiesList = filterConnections(proxiesList) # filter for working connections
# Write to file
with open("proxies.txt", 'w') as outfile:
json.dump(proxiesList, outfile)
cprint("Proxies saved to proxies.txt!","magenta","on_grey", attrs=['bold'])
示例13: write_output
# 需要導入模塊: import json [as 別名]
# 或者: from json import dump [as 別名]
def write_output(bucket_name, key_name, output_key_name, outstanding_requesters):
logging.getLogger().debug('[write_output] Start')
try:
current_data = '/tmp/' + key_name.split('/')[-1] + '_LOCAL.json'
with open(current_data, 'w') as outfile:
json.dump(outstanding_requesters, outfile)
s3 = boto3.client('s3')
s3.upload_file(current_data, bucket_name, output_key_name, ExtraArgs={'ContentType': "application/json"})
remove(current_data)
except Exception as e:
logging.getLogger().error("[write_output] \tError to write output file")
logging.getLogger().error(e)
logging.getLogger().debug('[write_output] End')
示例14: train
# 需要導入模塊: import json [as 別名]
# 或者: from json import dump [as 別名]
def train(session, model, curr_dir, data_train, data_val):
curr_dir = os.path.join(curr_dir, model.algorithm)
bestmodel_dir = os.path.join(curr_dir, 'best_checkpoint')
if not os.path.exists(curr_dir):
os.makedirs(curr_dir)
file_handler = logging.FileHandler(os.path.join(curr_dir, 'log.txt'))
logging.getLogger().addHandler(file_handler)
with open(os.path.join(curr_dir, FLAGS['save_name'] + '.json'), 'w') as f:
json.dump(FLAGS, f)
if not os.path.exists(bestmodel_dir):
os.makedirs(bestmodel_dir)
initialize_model(session, model, curr_dir, expect_exists=False)
model.train(session, curr_dir, bestmodel_dir, data_train, data_val)
示例15: record_results
# 需要導入模塊: import json [as 別名]
# 或者: from json import dump [as 別名]
def record_results(self, file_nm):
json.dump(self, open(file_nm, 'w'), indent=4,
default=self.jsondump)