當前位置: 首頁>>代碼示例>>Python>>正文


Python itertools.tee方法代碼示例

本文整理匯總了Python中itertools.tee方法的典型用法代碼示例。如果您正苦於以下問題:Python itertools.tee方法的具體用法?Python itertools.tee怎麽用?Python itertools.tee使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在itertools的用法示例。


在下文中一共展示了itertools.tee方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_peek

# 需要導入模塊: import itertools [as 別名]
# 或者: from itertools import tee [as 別名]
def test_peek(self):

        def give_gen():
            for i in range(1, 5):
                yield i

        def give_empty_gen():
            for i in range(1, 1):
                yield i

        obj = give_gen()

        for i in range(1, 5):
            num, new_obj = peek(obj)
            obj, new_obj = itertools.tee(obj)
            self.assertEqual(i, num)

        ret_val = peek(obj)
        obj = give_empty_gen()
        ret_val_1 = peek(obj)

        self.assertEqual(ret_val, None)
        self.assertEqual(ret_val_1, None) 
開發者ID:coala,項目名稱:coala-quickstart,代碼行數:25,代碼來源:UtilitiesTest.py

示例2: build_dataset

# 需要導入模塊: import itertools [as 別名]
# 或者: from itertools import tee [as 別名]
def build_dataset(args):

    print("Building dataset from : {}".format(args.input))
    print("-> Building {} random splits".format(args.nb_splits))

    nlp = spacy.load('en', create_pipeline=custom_pipeline)
    gen_a,gen_b = itertools.tee(data_generator(args.input),2)
    data = [(z["reviewerID"],z["asin"],tok,z["overall"]) for z,tok in zip(tqdm((z for z in gen_a),desc="reading file"),nlp.pipe((x["reviewText"] for x in gen_b), batch_size=1000000, n_threads=8))]

    print(data[0])
    shuffle(data)

    splits = [randint(0,args.nb_splits-1) for _ in range(0,len(data))]
    count = Counter(splits)

    print("Split distribution is the following:")
    print(count)

    return {"data":data,"splits":splits,"rows":("user_id","item_id","review","rating")} 
開發者ID:cedias,項目名稱:Hierarchical-Sentiment,代碼行數:21,代碼來源:prepare_data.py

示例3: iterintervals

# 需要導入模塊: import itertools [as 別名]
# 或者: from itertools import tee [as 別名]
def iterintervals(self, n=2):
        """Iterate over groups of `n` consecutive measurement points in the
        time series.

        """
        # tee the original iterator into n identical iterators
        streams = itertools.tee(iter(self), n)

        # advance the "cursor" on each iterator by an increasing
        # offset, e.g. if n=3:
        #
        #                   [a, b, c, d, e, f, ..., w, x, y, z]
        #  first cursor -->  *
        # second cursor -->     *
        #  third cursor -->        *
        for stream_index, stream in enumerate(streams):
            for _ in range(stream_index):
                next(stream)

        # now, zip the offset streams back together to yield tuples,
        # in the n=3 example it would yield:
        # (a, b, c), (b, c, d), ..., (w, x, y), (x, y, z)
        for intervals in zip(*streams):
            yield intervals 
開發者ID:datascopeanalytics,項目名稱:traces,代碼行數:26,代碼來源:timeseries.py

示例4: sliding_window

# 需要導入模塊: import itertools [as 別名]
# 或者: from itertools import tee [as 別名]
def sliding_window(n, seq):
    """
    Copied from toolz
    https://toolz.readthedocs.io/en/latest/_modules/toolz/itertoolz.html#sliding_window

    A sequence of overlapping subsequences

    >>> list(sliding_window(2, [1, 2, 3, 4]))
    [(1, 2), (2, 3), (3, 4)]

    This function creates a sliding window suitable for transformations like
    sliding means / smoothing

    >>> mean = lambda seq: float(sum(seq)) / len(seq)
    >>> list(map(mean, sliding_window(2, [1, 2, 3, 4])))
    [1.5, 2.5, 3.5]
    """
    return zip(*(collections.deque(itertools.islice(it, i), 0) or it
                 for i, it in enumerate(itertools.tee(seq, n)))) 
開發者ID:rootulp,項目名稱:hackerrank,代碼行數:21,代碼來源:the-birthday-bar.py

示例5: follow_path

# 需要導入模塊: import itertools [as 別名]
# 或者: from itertools import tee [as 別名]
def follow_path(self, path, types, call_scope):
        """
        Follows a path like::

            self.follow_path(iter(['Foo', 'bar']), [a_type], from_somewhere)

        to follow a call like ``module.a_type.Foo.bar`` (in ``from_somewhere``).
        """
        results_new = []
        iter_paths = itertools.tee(path, len(types))

        for i, typ in enumerate(types):
            fp = self._follow_path(iter_paths[i], typ, call_scope)
            if fp is not None:
                results_new += fp
            else:
                # This means stop iteration.
                return types
        return results_new 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:21,代碼來源:__init__.py

示例6: unnest

# 需要導入模塊: import itertools [as 別名]
# 或者: from itertools import tee [as 別名]
def unnest(item):
    # type: (Any) -> Iterable[Any]
    target = None  # type: Optional[Iterable]
    if isinstance(item, Iterable) and not isinstance(item, six.string_types):
        item, target = itertools.tee(item, 2)
    else:
        target = item
    if getattr(target, "__iter__", None):
        for el in target:
            if isinstance(el, Iterable) and not isinstance(el, six.string_types):
                el, el_copy = itertools.tee(el, 2)
                for sub in unnest(el_copy):
                    yield sub
            else:
                yield el
    else:
        yield target 
開發者ID:sarugaku,項目名稱:pythonfinder,代碼行數:19,代碼來源:utils.py

示例7: __call__

# 需要導入模塊: import itertools [as 別名]
# 或者: from itertools import tee [as 別名]
def __call__(self, jobs_or_statepoints):
        "Evaluate the schema for the given state points."
        s = dict()
        iterators = itertools.tee(jobs_or_statepoints, len(self))
        for key, it in zip(self, iterators):
            values = []
            keys = key.split('.')
            for sp in it:
                if not isinstance(sp, Mapping):
                    sp = sp.statepoint
                v = sp[keys[0]]
                for k in keys[1:]:
                    v = v[k]
                values.append(v)
            s[key] = _collect_by_type(values)
        return ProjectSchema(s) 
開發者ID:glotzerlab,項目名稱:signac,代碼行數:18,代碼來源:schema.py

示例8: random_bipartition_iter

# 需要導入模塊: import itertools [as 別名]
# 或者: from itertools import tee [as 別名]
def random_bipartition_iter(iterable, relative_size=.5, random_state=1):
    """random_bipartition_iter."""
    size_iterable, iterable1, iterable2 = tee(iterable, 3)
    size = iterator_size(size_iterable)
    part1_ids, part2_ids = random_bipartition(
        size, relative_size=relative_size, random_state=random_state)
    part1_iterable = selection_iterator(iterable1, part1_ids)
    part2_iterable = selection_iterator(iterable2, part2_ids)
    return part1_iterable, part2_iterable 
開發者ID:fabriziocosta,項目名稱:EDeN,代碼行數:11,代碼來源:util.py

示例9: join_pre_processes

# 需要導入模塊: import itertools [as 別名]
# 或者: from itertools import tee [as 別名]
def join_pre_processes(iterable, pre_processes=None, weights=None):
    """join_pre_processes."""
    graphs_list = list()
    assert(len(weights) == len(pre_processes)), 'Different lengths'
    # NOTE: we have to duplicate the sequences iterator if we want to use
    # different modifiers in parallel
    iterables = tee(iterable, len(pre_processes))
    for pre_process_item, iterable_item in zip(pre_processes, iterables):
        graphs_list.append(pre_process_item(iterable_item))
    return (graphs_list, weights) 
開發者ID:fabriziocosta,項目名稱:EDeN,代碼行數:12,代碼來源:ml.py

示例10: auto_relabel

# 需要導入模塊: import itertools [as 別名]
# 或者: from itertools import tee [as 別名]
def auto_relabel(graphs, n_clusters=16, **opts):
    """Label nodes with cluster id."""
    graphs, graphs_ = tee(graphs)
    label_list, vecs_list = auto_label(graphs_, n_clusters=n_clusters, **opts)
    relabeled_graphs = []
    for labels, vecs, orig_graph in zip(label_list, vecs_list, graphs):
        graph = nx.Graph(orig_graph)
        for label, vec, u in zip(labels, vecs, graph.nodes()):
            graph.nodes[u]['label'] = label
            graph.nodes[u]['vec'] = list(vec)
        relabeled_graphs.append(graph)
    return relabeled_graphs 
開發者ID:fabriziocosta,項目名稱:EDeN,代碼行數:14,代碼來源:graph.py

示例11: shared_parent

# 需要導入模塊: import itertools [as 別名]
# 或者: from itertools import tee [as 別名]
def shared_parent(self):
        """
        Returns the folder object that is the shared parent (the root of
        a shared folder hierarchy) or None if there is no shared parent.
        """
        root = self
        a, b = itertools.tee(reversed(self.breadcrumbs()))
        next(b, None)
        for folder, parent in itertools.zip_longest(a, b):
            if folder.shared:
                root = folder
            if parent is None or not parent.shared:
                break
        return root 
開發者ID:pinax,項目名稱:pinax-documents,代碼行數:16,代碼來源:models.py

示例12: nsmallest

# 需要導入模塊: import itertools [as 別名]
# 或者: from itertools import tee [as 別名]
def nsmallest(n, iterable, key=None):
    """Find the n smallest elements in a dataset.

    Equivalent to:  sorted(iterable, key=key)[:n]
    """
    # Short-cut for n==1 is to use min() when len(iterable)>0
    if n == 1:
        it = iter(iterable)
        head = list(islice(it, 1))
        if not head:
            return []
        if key is None:
            return [min(chain(head, it))]
        return [min(chain(head, it), key=key)]

    # When n>=size, it's faster to use sorted()
    try:
        size = len(iterable)
    except (TypeError, AttributeError):
        pass
    else:
        if n >= size:
            return sorted(iterable, key=key)[:n]

    # When key is none, use simpler decoration
    if key is None:
        it = zip(iterable, count())                         # decorate
        result = _nsmallest(n, it)
        return [r[0] for r in result]                       # undecorate

    # General case, slowest method
    in1, in2 = tee(iterable)
    it = zip(map(key, in1), count(), in2)                   # decorate
    result = _nsmallest(n, it)
    return [r[2] for r in result]                           # undecorate 
開發者ID:war-and-code,項目名稱:jawfish,代碼行數:37,代碼來源:heapq.py

示例13: nlargest

# 需要導入模塊: import itertools [as 別名]
# 或者: from itertools import tee [as 別名]
def nlargest(n, iterable, key=None):
    """Find the n largest elements in a dataset.

    Equivalent to:  sorted(iterable, key=key, reverse=True)[:n]
    """

    # Short-cut for n==1 is to use max() when len(iterable)>0
    if n == 1:
        it = iter(iterable)
        head = list(islice(it, 1))
        if not head:
            return []
        if key is None:
            return [max(chain(head, it))]
        return [max(chain(head, it), key=key)]

    # When n>=size, it's faster to use sorted()
    try:
        size = len(iterable)
    except (TypeError, AttributeError):
        pass
    else:
        if n >= size:
            return sorted(iterable, key=key, reverse=True)[:n]

    # When key is none, use simpler decoration
    if key is None:
        it = zip(iterable, count(0,-1))                     # decorate
        result = _nlargest(n, it)
        return [r[0] for r in result]                       # undecorate

    # General case, slowest method
    in1, in2 = tee(iterable)
    it = zip(map(key, in1), count(0,-1), in2)               # decorate
    result = _nlargest(n, it)
    return [r[2] for r in result]                           # undecorate 
開發者ID:war-and-code,項目名稱:jawfish,代碼行數:38,代碼來源:heapq.py

示例14: __iter__

# 需要導入模塊: import itertools [as 別名]
# 或者: from itertools import tee [as 別名]
def __iter__(self) -> Iterator[Any]:
        if self._computed:
            yield from self._dataset
        else:
            iterable, self._iterable = tee(self._iterable)
            yield from iterable 
開發者ID:tofunlp,項目名稱:lineflow,代碼行數:8,代碼來源:core.py

示例15: test_search

# 需要導入模塊: import itertools [as 別名]
# 或者: from itertools import tee [as 別名]
def test_search(self):
        actual = self.pclient.images.search("alpine", 25)
        names, length = itertools.tee(actual)

        for img in names:
            self.assertIn("alpine", img.name)
        self.assertTrue(0 < len(list(length)) <= 25) 
開發者ID:containers,項目名稱:python-podman,代碼行數:9,代碼來源:test_images.py


注:本文中的itertools.tee方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。