當前位置: 首頁>>代碼示例>>Python>>正文


Python inputs.inputs方法代碼示例

本文整理匯總了Python中inputs.inputs方法的典型用法代碼示例。如果您正苦於以下問題:Python inputs.inputs方法的具體用法?Python inputs.inputs怎麽用?Python inputs.inputs使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在inputs的用法示例。


在下文中一共展示了inputs.inputs方法的8個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: language_model_graph

# 需要導入模塊: import inputs [as 別名]
# 或者: from inputs import inputs [as 別名]
def language_model_graph(self, compute_loss=True):
    """Constructs LM graph from inputs to LM loss.

    * Caches the VatxtInput object in `self.lm_inputs`
    * Caches tensors: `lm_embedded`

    Args:
      compute_loss: bool, whether to compute and return the loss or stop after
        the LSTM computation.

    Returns:
      loss: scalar float.
    """
    inputs = _inputs('train', pretrain=True)
    self.lm_inputs = inputs
    return self._lm_loss(inputs, compute_loss=compute_loss) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:18,代碼來源:graphs.py

示例2: _lm_loss

# 需要導入模塊: import inputs [as 別名]
# 或者: from inputs import inputs [as 別名]
def _lm_loss(self,
               inputs,
               emb_key='lm_embedded',
               lstm_layer='lstm',
               lm_loss_layer='lm_loss',
               loss_name='lm_loss',
               compute_loss=True):
    embedded = self.layers['embedding'](inputs.tokens)
    self.tensors[emb_key] = embedded
    lstm_out, next_state = self.layers[lstm_layer](embedded, inputs.state,
                                                   inputs.length)
    if compute_loss:
      loss = self.layers[lm_loss_layer](
          [lstm_out, inputs.labels, inputs.weights])
      with tf.control_dependencies([inputs.save_state(next_state)]):
        loss = tf.identity(loss)
        tf.summary.scalar(loss_name, loss)

      return loss 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:21,代碼來源:graphs.py

示例3: _activation_summary

# 需要導入模塊: import inputs [as 別名]
# 或者: from inputs import inputs [as 別名]
def _activation_summary(self, x):
        """Helper to create summaries for activations.
        Creates a summary that provides a histogram of activations.
        Creates a summary that measure the sparsity of activations.
        Args:
            x: Tensor
        Returns:
            nothing
        """
        # Remove 'tower_[0-9]/' from the name in case this is a multi-GPU training
        # session. This helps the clarity of presentation on tensorboard.
        # Error: these summaries cause high classifier error!!!
        # All inputs to node MergeSummary/MergeSummary must be from the same frame.

        # tensor_name = re.sub('%s_[0-9]*/' % "tower", '', x.op.name)
        # tf.histogram_summary(tensor_name + '/activations', x)
        # tf.scalar_summary(tensor_name + '/sparsity', tf.nn.zero_fraction(x)) 
開發者ID:yuhui-lin,項目名稱:web_page_classification,代碼行數:19,代碼來源:model.py

示例4: loss

# 需要導入模塊: import inputs [as 別名]
# 或者: from inputs import inputs [as 別名]
def loss(logits, labels):
    """Add L2Loss to all the trainable variables.
    Add summary for "Loss" and "Loss/avg".
    Args:
        logits: Logits from inference().
        labels: Labels from distorted_inputs or inputs(). 1-D tensor
                of shape [batch_size]
    Returns:
        Loss tensor of type float.
    """
    # Calculate the average cross entropy loss across the batch.
    labels = tf.cast(labels, tf.int64)
    cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(
        logits,
        labels,
        name='cross_entropy_per_example')
    cross_entropy_mean = tf.reduce_mean(cross_entropy, name='cross_entropy')
    tf.add_to_collection('losses', cross_entropy_mean)

    # The total loss is defined as the cross entropy loss plus all of the weight
    # decay terms (L2 loss).
    return tf.add_n(tf.get_collection('losses'), name='total_loss') 
開發者ID:yuhui-lin,項目名稱:web_page_classification,代碼行數:24,代碼來源:model.py

示例5: classifier_graph

# 需要導入模塊: import inputs [as 別名]
# 或者: from inputs import inputs [as 別名]
def classifier_graph(self):
    """Constructs classifier graph from inputs to classifier loss.

    * Caches the VatxtInput object in `self.cl_inputs`
    * Caches tensors: `cl_embedded`, `cl_logits`, `cl_loss`

    Returns:
      loss: scalar float.
    """
    inputs = _inputs('train', pretrain=False)
    self.cl_inputs = inputs
    embedded = self.layers['embedding'](inputs.tokens)
    self.tensors['cl_embedded'] = embedded

    _, next_state, logits, loss = self.cl_loss_from_embedding(
        embedded, return_intermediates=True)
    tf.summary.scalar('classification_loss', loss)
    self.tensors['cl_logits'] = logits
    self.tensors['cl_loss'] = loss

    acc = layers_lib.accuracy(logits, inputs.labels, inputs.weights)
    tf.summary.scalar('accuracy', acc)

    adv_loss = (self.adversarial_loss() * tf.constant(
        FLAGS.adv_reg_coeff, name='adv_reg_coeff'))
    tf.summary.scalar('adversarial_loss', adv_loss)

    total_loss = loss + adv_loss
    tf.summary.scalar('total_classification_loss', total_loss)

    with tf.control_dependencies([inputs.save_state(next_state)]):
      total_loss = tf.identity(total_loss)

    return total_loss 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:36,代碼來源:graphs.py

示例6: eval_graph

# 需要導入模塊: import inputs [as 別名]
# 或者: from inputs import inputs [as 別名]
def eval_graph(self, dataset='test'):
    """Constructs classifier evaluation graph.

    Args:
      dataset: the labeled dataset to evaluate, {'train', 'test', 'valid'}.

    Returns:
      eval_ops: dict<metric name, tuple(value, update_op)>
      var_restore_dict: dict mapping variable restoration names to variables.
        Trainable variables will be mapped to their moving average names.
    """
    inputs = _inputs(dataset, pretrain=False)
    embedded = self.layers['embedding'](inputs.tokens)
    _, next_state, logits, _ = self.cl_loss_from_embedding(
        embedded, inputs=inputs, return_intermediates=True)

    eval_ops = {
        'accuracy':
            tf.contrib.metrics.streaming_accuracy(
                layers_lib.predictions(logits), inputs.labels, inputs.weights)
    }

    with tf.control_dependencies([inputs.save_state(next_state)]):
      acc, acc_update = eval_ops['accuracy']
      acc_update = tf.identity(acc_update)
      eval_ops['accuracy'] = (acc, acc_update)

    var_restore_dict = make_restore_average_vars_dict()
    return eval_ops, var_restore_dict 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:31,代碼來源:graphs.py

示例7: cl_loss_from_embedding

# 需要導入模塊: import inputs [as 別名]
# 或者: from inputs import inputs [as 別名]
def cl_loss_from_embedding(self,
                             embedded,
                             inputs=None,
                             return_intermediates=False):
    """Compute classification loss from embedding.

    Args:
      embedded: 3-D float Tensor [batch_size, num_timesteps, embedding_dim]
      inputs: VatxtInput, defaults to self.cl_inputs.
      return_intermediates: bool, whether to return intermediate tensors or only
        the final loss.

    Returns:
      If return_intermediates is True:
        lstm_out, next_state, logits, loss
      Else:
        loss
    """
    if inputs is None:
      inputs = self.cl_inputs

    lstm_out, next_state = self.layers['lstm'](embedded, inputs.state,
                                               inputs.length)
    logits = self.layers['cl_logits'](lstm_out)
    loss = layers_lib.classification_loss(logits, inputs.labels, inputs.weights)

    if return_intermediates:
      return lstm_out, next_state, logits, loss
    else:
      return loss 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:32,代碼來源:graphs.py

示例8: _inputs

# 需要導入模塊: import inputs [as 別名]
# 或者: from inputs import inputs [as 別名]
def _inputs(dataset='train', pretrain=False, bidir=False):
  return inputs_lib.inputs(
      data_dir=FLAGS.data_dir,
      phase=dataset,
      bidir=bidir,
      pretrain=pretrain,
      use_seq2seq=pretrain and FLAGS.use_seq2seq_autoencoder,
      state_size=FLAGS.rnn_cell_size,
      num_layers=FLAGS.rnn_num_layers,
      batch_size=FLAGS.batch_size,
      unroll_steps=FLAGS.num_timesteps,
      eos_id=FLAGS.vocab_size - 1) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:14,代碼來源:graphs.py


注:本文中的inputs.inputs方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。