本文整理匯總了Python中inception.imagenet_data.ImagenetData方法的典型用法代碼示例。如果您正苦於以下問題:Python imagenet_data.ImagenetData方法的具體用法?Python imagenet_data.ImagenetData怎麽用?Python imagenet_data.ImagenetData使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類inception.imagenet_data
的用法示例。
在下文中一共展示了imagenet_data.ImagenetData方法的9個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: main
# 需要導入模塊: from inception import imagenet_data [as 別名]
# 或者: from inception.imagenet_data import ImagenetData [as 別名]
def main(_):
dataset = ImagenetData(subset=FLAGS.subset)
assert dataset.data_files()
if tf.gfile.Exists(FLAGS.train_dir):
tf.gfile.DeleteRecursively(FLAGS.train_dir)
tf.gfile.MakeDirs(FLAGS.train_dir)
inception_train.train(dataset)
示例2: main
# 需要導入模塊: from inception import imagenet_data [as 別名]
# 或者: from inception.imagenet_data import ImagenetData [as 別名]
def main(unused_args):
assert FLAGS.job_name in ['ps', 'worker'], 'job_name must be ps or worker'
# Extract all the hostnames for the ps and worker jobs to construct the
# cluster spec.
ps_hosts = FLAGS.ps_hosts.split(',')
worker_hosts = FLAGS.worker_hosts.split(',')
tf.logging.info('PS hosts are: %s' % ps_hosts)
tf.logging.info('Worker hosts are: %s' % worker_hosts)
cluster_spec = tf.train.ClusterSpec({'ps': ps_hosts,
'worker': worker_hosts})
server = tf.train.Server(
{'ps': ps_hosts,
'worker': worker_hosts},
job_name=FLAGS.job_name,
task_index=FLAGS.task_id,
protocol=FLAGS.protocol)
if FLAGS.job_name == 'ps':
# `ps` jobs wait for incoming connections from the workers.
server.join()
else:
# `worker` jobs will actually do the work.
dataset = ImagenetData(subset=FLAGS.subset)
assert dataset.data_files()
# Only the chief checks for or creates train_dir.
if FLAGS.task_id == 0:
if not tf.gfile.Exists(FLAGS.train_dir):
tf.gfile.MakeDirs(FLAGS.train_dir)
inception_distributed_train.train(server.target, dataset, cluster_spec)
示例3: main
# 需要導入模塊: from inception import imagenet_data [as 別名]
# 或者: from inception.imagenet_data import ImagenetData [as 別名]
def main(unused_argv=None):
dataset = ImagenetData(subset=FLAGS.subset)
assert dataset.data_files()
if tf.gfile.Exists(FLAGS.eval_dir):
tf.gfile.DeleteRecursively(FLAGS.eval_dir)
tf.gfile.MakeDirs(FLAGS.eval_dir)
inception_eval.evaluate(dataset)
示例4: main
# 需要導入模塊: from inception import imagenet_data [as 別名]
# 或者: from inception.imagenet_data import ImagenetData [as 別名]
def main(unused_args):
assert FLAGS.job_name in ['ps', 'worker'], 'job_name must be ps or worker'
# Extract all the hostnames for the ps and worker jobs to construct the
# cluster spec.
ps_hosts = FLAGS.ps_hosts.split(',')
worker_hosts = FLAGS.worker_hosts.split(',')
tf.logging.info('PS hosts are: %s' % ps_hosts)
tf.logging.info('Worker hosts are: %s' % worker_hosts)
cluster_spec = tf.train.ClusterSpec({'ps': ps_hosts,
'worker': worker_hosts})
server = tf.train.Server(
{'ps': ps_hosts,
'worker': worker_hosts},
job_name=FLAGS.job_name,
task_index=FLAGS.task_id)
if FLAGS.job_name == 'ps':
# `ps` jobs wait for incoming connections from the workers.
server.join()
else:
# `worker` jobs will actually do the work.
dataset = ImagenetData(subset=FLAGS.subset)
assert dataset.data_files()
# Only the chief checks for or creates train_dir.
if FLAGS.task_id == 0:
if not tf.gfile.Exists(FLAGS.train_dir):
tf.gfile.MakeDirs(FLAGS.train_dir)
inception_distributed_train.train(server.target, dataset, cluster_spec)
示例5: main
# 需要導入模塊: from inception import imagenet_data [as 別名]
# 或者: from inception.imagenet_data import ImagenetData [as 別名]
def main(_):
dataset = ImagenetData(subset=FLAGS.subset)
#assert dataset.data_files()
if tf.gfile.Exists(FLAGS.train_dir):
tf.gfile.DeleteRecursively(FLAGS.train_dir)
tf.gfile.MakeDirs(FLAGS.train_dir)
inception_train.train(dataset)
示例6: main
# 需要導入模塊: from inception import imagenet_data [as 別名]
# 或者: from inception.imagenet_data import ImagenetData [as 別名]
def main(unused_args):
assert FLAGS.job_name in ['ps', 'worker'], 'job_name must be ps or worker'
# Extract all the hostnames for the ps and worker jobs to construct the
# cluster spec.
ps_hosts = FLAGS.ps_hosts.split(',')
worker_hosts = FLAGS.worker_hosts.split(',')
tf.logging.info('PS hosts are: %s' % ps_hosts)
tf.logging.info('Worker hosts are: %s' % worker_hosts)
cluster_spec = tf.train.ClusterSpec({'ps': ps_hosts,
'worker': worker_hosts})
server = tf.train.Server(
{'ps': ps_hosts,
'worker': worker_hosts},
job_name=FLAGS.job_name,
task_index=FLAGS.task_id)
if FLAGS.job_name == 'ps':
# `ps` jobs wait for incoming connections from the workers.
server.join()
else:
# `worker` jobs will actually do the work.
dataset = ImagenetData(subset=FLAGS.subset)
#assert dataset.data_files()
# Only the chief checks for or creates train_dir.
if FLAGS.task_id == 0:
if not tf.gfile.Exists(FLAGS.train_dir):
tf.gfile.MakeDirs(FLAGS.train_dir)
inception_distributed_train.train(server.target, dataset, cluster_spec)
示例7: main
# 需要導入模塊: from inception import imagenet_data [as 別名]
# 或者: from inception.imagenet_data import ImagenetData [as 別名]
def main(_):
dataset = ImagenetData(subset=FLAGS.subset)
assert dataset.data_files()
if tf.gfile.Exists(FLAGS.train_dir):
tf.gfile.DeleteRecursively(FLAGS.train_dir)
tf.gfile.MakeDirs(FLAGS.train_dir)
FLAGS.dataset_name = 'imagenet'
inception_train.train(dataset)
示例8: main
# 需要導入模塊: from inception import imagenet_data [as 別名]
# 或者: from inception.imagenet_data import ImagenetData [as 別名]
def main(unused_args):
FLAGS.dataset_name = 'imagenet'
assert FLAGS.job_name in ['ps', 'worker'], 'job_name must be ps or worker'
# Extract all the hostnames for the ps and worker jobs to construct the
# cluster spec.
ps_hosts = FLAGS.ps_hosts.split(',')
worker_hosts = FLAGS.worker_hosts.split(',')
tf.logging.info('PS hosts are: %s' % ps_hosts)
tf.logging.info('Worker hosts are: %s' % worker_hosts)
cluster_spec = tf.train.ClusterSpec({'ps': ps_hosts,
'worker': worker_hosts})
sess_config = tf.ConfigProto()
sess_config.gpu_options.allow_growth = True
server = tf.train.Server(
{'ps': ps_hosts,
'worker': worker_hosts},
job_name=FLAGS.job_name,
task_index=FLAGS.task_id,
config=sess_config)
if FLAGS.job_name == 'ps':
# `ps` jobs wait for incoming connections from the workers.
server.join()
else:
# `worker` jobs will actually do the work.
dataset = ImagenetData(subset=FLAGS.subset)
assert dataset.data_files()
# Only the chief checks for or creates train_dir.
if FLAGS.task_id == 0:
if not tf.gfile.Exists(FLAGS.train_dir):
tf.gfile.MakeDirs(FLAGS.train_dir)
inception_distributed_train.train(server.target, dataset, cluster_spec)
示例9: main
# 需要導入模塊: from inception import imagenet_data [as 別名]
# 或者: from inception.imagenet_data import ImagenetData [as 別名]
def main(unused_argv=None):
dataset = ImagenetData(subset=FLAGS.subset)
assert dataset.data_files()
if tf.gfile.Exists(FLAGS.eval_dir):
tf.gfile.DeleteRecursively(FLAGS.eval_dir)
tf.gfile.MakeDirs(FLAGS.eval_dir)
FLAGS.dataset_name = 'imagenet'
FLAGS.num_examples = dataset.num_examples_per_epoch()
inception_eval.evaluate(dataset)