當前位置: 首頁>>代碼示例>>Python>>正文


Python face_utils.shape_to_np方法代碼示例

本文整理匯總了Python中imutils.face_utils.shape_to_np方法的典型用法代碼示例。如果您正苦於以下問題:Python face_utils.shape_to_np方法的具體用法?Python face_utils.shape_to_np怎麽用?Python face_utils.shape_to_np使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在imutils.face_utils的用法示例。


在下文中一共展示了face_utils.shape_to_np方法的10個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: orientation

# 需要導入模塊: from imutils import face_utils [as 別名]
# 或者: from imutils.face_utils import shape_to_np [as 別名]
def orientation(self):
        """
        人臉定位
        :return:
        """
        faces = []
        for rect in self.rects:
            face = {}
            face_shades_width = rect.right() - rect.left()
            predictor_shape = self.predictor(self.img_gray, rect)
            face_shape = face_utils.shape_to_np(predictor_shape)

            face['cigarette'] = self.get_cigarette_info(face_shape, face_shades_width)
            face['glasses'] = self.get_glasses_info(face_shape, face_shades_width)

            faces.append(face)

        return faces 
開發者ID:tomoncle,項目名稱:face-detection-induction-course,代碼行數:20,代碼來源:input_static_pic_to_gif2_for_class.py

示例2: orientation

# 需要導入模塊: from imutils import face_utils [as 別名]
# 或者: from imutils.face_utils import shape_to_np [as 別名]
def orientation(self, rects, img_gray):
        """
        人臉定位
        :return:
        """
        faces = []
        for rect in rects:
            face = {}
            face_shades_width = rect.right() - rect.left()
            predictor_shape = self.predictor(img_gray, rect)
            face_shape = face_utils.shape_to_np(predictor_shape)
            face['cigarette'] = self.get_cigarette_info(face_shape, face_shades_width)
            face['glasses'] = self.get_glasses_info(face_shape, face_shades_width)

            faces.append(face)

        return faces 
開發者ID:tomoncle,項目名稱:face-detection-induction-course,代碼行數:19,代碼來源:input_video_stream_paste_mask.py

示例3: blur

# 需要導入模塊: from imutils import face_utils [as 別名]
# 或者: from imutils.face_utils import shape_to_np [as 別名]
def blur(image):
    gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    faces = detector(gray, 0)

    mask = np.zeros(image.shape[:2], np.uint8)
    blurred_image = image.copy()
    for face in faces:  # if there are faces
        (x, y, w, h) = (face.left(), face.top(), face.width(), face.height())
        blurred_image[y : y + h, x : x + w, :] = anonymize_face_pixelate(
            blurred_image[y : y + h, x : x + w, :], blocks=10
        )
        # *** Facial Landmarks detection
        shape = predictor(gray, face)
        shape = face_utils.shape_to_np(shape)
        # Get mask with only face shape
        shape = cv2.convexHull(shape)
        cv2.drawContours(mask, [shape], -1, 255, -1)

        # Replace blurred image only in mask
        mask = mask / 255.0
        mask = np.expand_dims(mask, axis=-1)
        image = (1.0 - mask) * image + mask * blurred_image
        image = image.astype(np.uint8)

    return image 
開發者ID:charlielito,項目名稱:snapchat-filters-opencv,代碼行數:27,代碼來源:blur_face.py

示例4: shape_to_np

# 需要導入模塊: from imutils import face_utils [as 別名]
# 或者: from imutils.face_utils import shape_to_np [as 別名]
def shape_to_np(shape, dtype="int"):
    # initialize (x, y) coordinates to zero
    coords = np.zeros((shape.num_parts, 2), dtype=dtype)

    # loop through 68 facial landmarks and convert them
    # to a 2-tuple of (x, y)- coordinates
    for i in range(0, shape.num_parts):
        coords[i] = (shape.part(i).x, shape.part(i).y)

    return coords

# construct the arguments

# if you want to pass arguments at the time of running code
# follow below code and format for running code 
開發者ID:riya-17,項目名稱:FaceRecognition,代碼行數:17,代碼來源:FaceRecognizer.py

示例5: encode_face

# 需要導入模塊: from imutils import face_utils [as 別名]
# 或者: from imutils.face_utils import shape_to_np [as 別名]
def encode_face(image):
    face_locations = face_detector(image, 1)
    face_encodings_list = []
    landmarks_list = []
    for face_location in face_locations:
        # DETECT FACES
        shape = pose_predictor_68_point(image, face_location)
        face_encodings_list.append(np.array(face_encoder.compute_face_descriptor(image, shape, num_jitters=1)))
        # GET LANDMARKS
        shape = face_utils.shape_to_np(shape)
        landmarks_list.append(shape)
    face_locations = transform(image, face_locations)
    return face_encodings_list, face_locations, landmarks_list 
開發者ID:anisayari,項目名稱:easy_facial_recognition,代碼行數:15,代碼來源:easy_facial_recognition.py

示例6: recognize

# 需要導入模塊: from imutils import face_utils [as 別名]
# 或者: from imutils.face_utils import shape_to_np [as 別名]
def recognize():
    database = initialize()
    cap = cv2.VideoCapture(0)
    (lStart, lEnd) = face_utils.FACIAL_LANDMARKS_IDXS["left_eye"]
    (rStart, rEnd) = face_utils.FACIAL_LANDMARKS_IDXS["right_eye"]
    while True:
        ret, img = cap.read()
        img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
        gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
        subjects = detector(gray, 0)
        for subject in subjects:
            shape = predictor(gray, subject)
            shape = face_utils.shape_to_np(shape)  # converting to NumPy Array
            leftEye = shape[lStart:lEnd]
            rightEye = shape[rStart:rEnd]
            leftEAR = eye_aspect_ratio(leftEye)
            rightEAR = eye_aspect_ratio(rightEye)
            ear = (leftEAR + rightEAR) / 2.0
            leftEyeHull = cv2.convexHull(leftEye)
            rightEyeHull = cv2.convexHull(rightEye)
            cv2.drawContours(img, [leftEyeHull], -1, (0, 255, 0), 1)
            cv2.drawContours(img, [rightEyeHull], -1, (0, 255, 0), 1)
            extract_face_info(img, img_rgb, database,ear)
        cv2.imshow('Recognizing faces', img)
        if cv2.waitKey(1) == ord('q'):
            break

    cap.release()
    cv2.destroyAllWindows() 
開發者ID:akshaybahadur21,項目名稱:Facial-Recognition-using-Facenet,代碼行數:31,代碼來源:rec-feat.py

示例7: build_mask_dataset

# 需要導入模塊: from imutils import face_utils [as 別名]
# 或者: from imutils.face_utils import shape_to_np [as 別名]
def build_mask_dataset(in_dir, out_dir, model_path):
    """Generate a dataset of segmentation masks from images.

    @param in_dir: string
                   input directory of images.
    @param out_dir: string
                    output directory of images.
    @param model_path: string
                       path to HOG model for facial features.
    """
    # initialize dlib's face detector (HOG-based) and then create
    # the facial landmark predictor
    detector = dlib.get_frontal_face_detector()
    predictor = dlib.shape_predictor(model_path)

    image_paths = os.listdir(in_dir)
    n_images = len(image_paths)
    for i, image_path in enumerate(image_paths):
        print('Building face-mask dataset: [%d/%d] images.' % (i + 1, n_images))
        image_full_path = os.path.join(in_dir, image_path)

        image = cv2.imread(image_full_path)
        gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

        # detect faces in the grayscale image
        rects = detector(gray, 1)
        try:
            rect = rects[0]  # we are only going to use the first one

            # determine the facial landmarks for the face region, then
            # convert the landmark (x, y)-coordinates to a NumPy array
            shape = predictor(gray, rect)
            shape = face_utils.shape_to_np(shape)
            output = visualize_facial_landmarks(image, shape)
            cv2.imwrite(os.path.join(out_dir, image_path), output)
        except:
            # if for some reason no bounding box is found, send blank.
            output = np.ones_like(image) * 255
            cv2.imwrite(os.path.join(out_dir, image_path), output) 
開發者ID:mhw32,項目名稱:multimodal-vae-public,代碼行數:41,代碼來源:setup.py

示例8: get_marks

# 需要導入模塊: from imutils import face_utils [as 別名]
# 或者: from imutils.face_utils import shape_to_np [as 別名]
def get_marks(gray, face_coord):
    """
    Arguments:
        gray: grayscale image array
        face_coord: rectangle coordinates for one face
    Returns:
        array of coordinates of facial landmarks scaled to range [-0.5, 0.5]
    """
    shape = face_marks(gray, face_coord)
    shape = face_utils.shape_to_np(shape).astype(float)
    shape[:,0] = (shape[:,0] - face_coord.left())/face_coord.width()-0.5
    shape[:,1] = (shape[:,1] - face_coord.top())/face_coord.height()-0.5
    return shape 
開發者ID:thevarunsharma,項目名稱:Animoji-Animate,代碼行數:15,代碼來源:detect.py

示例9: get_landmarks

# 需要導入模塊: from imutils import face_utils [as 別名]
# 或者: from imutils.face_utils import shape_to_np [as 別名]
def get_landmarks(self, frame, type):
        '''
        Get all facial landmarks in a face 
        
        Args:
            frame (cv2 image): the original frame. In RGB format.
            type (str): 5 or 68 facial landmarks
        
        Outputs:
            shape (array): facial landmarks' co-ords in format of of tuples (x,y)
        '''
        if self.predictor is None:
            print("[INFO] load " + type + " facial landmarks model ...")
            self.predictor = dlib.shape_predictor("../shape_predictor_" + type + "_face_landmarks.dat")
            print("[INFO] Load model - DONE!")
        
        if frame is None:
            return None, None
        # all face will be resized to a fix size, e.g width = 200
        #face = imutils.resize(face, width=200)
        # face must be gray
        gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
        rects = self.face_detection(frame)
        
        if len(rects)<0 or len(rects)==0:
            return None, None
            
        shape = self.predictor(gray, rects[0])
        shape = face_utils.shape_to_np(shape)
        
        # in shape, there are 68 pairs of (x, y) carrying coords of 68 points.
        # to draw landmarks, use: for (x, y) in shape: cv2.circle(image, (x, y), 1, (0, 0, 255), -1)
        
        return shape, rects 
開發者ID:habom2310,項目名稱:Heart-rate-measurement-using-camera,代碼行數:36,代碼來源:face_utilities.py

示例10: extract_fl_features

# 需要導入模塊: from imutils import face_utils [as 別名]
# 或者: from imutils.face_utils import shape_to_np [as 別名]
def extract_fl_features(self, video_input, user_acts):
        """TODO

        Returns:
            dict: TODO
        """
        def _distance(a, b):
            return np.linalg.norm(a-b)
        print(f'VIDEO FEATURE ENTER, len(video_input): {len(video_input)}')
        features = []
        aggregated_feats = None
        for frame in video_input[::2]:
            frame = cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY)
            frame = self.CLAHE.apply(frame)
            faces = self.DETECTOR(frame, 1)
            if len(faces) > 0:  # at least one face detected
                landmarks = self.PREDICTOR(frame, faces[0])
                landmarks = face_utils.shape_to_np(landmarks)
                norm_left_eye = _distance(landmarks[21], landmarks[39])
                norm_right_eye = _distance(landmarks[22], landmarks[42])
                norm_lips = _distance(landmarks[33], landmarks[52])
                eyebrow_left = sum(
                    [(_distance(landmarks[39], landmarks[i]) / norm_left_eye)
                        for i in [18, 19, 20, 21]]
                )
                eyebrow_right = sum(
                    [(_distance(landmarks[42], landmarks[i]) / norm_right_eye)
                        for i in [22, 23, 24, 25]]
                )
                lip_left = sum(
                    [(_distance(landmarks[33], landmarks[i]) / norm_lips)
                        for i in [48, 49, 50]]
                )
                lip_right = sum(
                    [(_distance(landmarks[33], landmarks[i]) / norm_lips)
                        for i in [52, 53, 54]]
                )
                mouth_width = _distance(landmarks[48], landmarks[54])
                mouth_height = _distance(landmarks[51], landmarks[57])
                features.append(np.array([
                    eyebrow_left,
                    eyebrow_right,
                    lip_left,
                    lip_right,
                    mouth_width,
                    mouth_height
                ]))

        # aggregate features across frames
        if len(features) > 0:
            mean = np.mean(features, axis=0)
            mini = np.amin(features, axis=0)
            maxi = np.amax(features, axis=0)
            std = np.std(features, axis=0)
            perc25 = np.percentile(features, q=25, axis=0)
            perc75 = np.percentile(features, q=75, axis=0)

            aggregated_feats = np.array([mean, mini, maxi, std, perc25, perc75]).reshape(1, 36)

        print("VIDEO FEAT PUB")
        return {'fl_features': aggregated_feats} 
開發者ID:DigitalPhonetics,項目名稱:adviser,代碼行數:63,代碼來源:FeatureExtractor.py


注:本文中的imutils.face_utils.shape_to_np方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。