本文整理匯總了Python中imutils.face_utils.rect_to_bb方法的典型用法代碼示例。如果您正苦於以下問題:Python face_utils.rect_to_bb方法的具體用法?Python face_utils.rect_to_bb怎麽用?Python face_utils.rect_to_bb使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類imutils.face_utils
的用法示例。
在下文中一共展示了face_utils.rect_to_bb方法的7個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: extract_face_info
# 需要導入模塊: from imutils import face_utils [as 別名]
# 或者: from imutils.face_utils import rect_to_bb [as 別名]
def extract_face_info(img, img_rgb, database,ear):
faces = detector(img_rgb)
x, y, w, h = 0, 0, 0, 0
if len(faces) > 0:
for face in faces:
(x, y, w, h) = face_utils.rect_to_bb(face)
cv2.rectangle(img, (x, y), (x + w, y + h), (255, 255, 0), 2)
image = img[y:y + h, x:x + w]
name, min_dist = recognize_face(image, database)
if ear > thresh:
if min_dist < 0.1:
cv2.putText(img, "Face : " + name, (x, y - 50), cv2.FONT_HERSHEY_PLAIN, 1.5, (0, 255, 0), 2)
cv2.putText(img, "Dist : " + str(min_dist), (x, y - 20), cv2.FONT_HERSHEY_PLAIN, 1.5, (0, 255, 0), 2)
else:
cv2.putText(img, 'No matching faces', (x, y - 20), cv2.FONT_HERSHEY_PLAIN, 1.5, (0, 0, 255), 2)
else:
cv2.putText(img, 'Eyes Closed', (x, y - 20), cv2.FONT_HERSHEY_PLAIN, 1.5, (0, 0, 255), 2)
示例2: face_detection
# 需要導入模塊: from imutils import face_utils [as 別名]
# 或者: from imutils.face_utils import rect_to_bb [as 別名]
def face_detection(self, frame):
'''
Detect faces in a frame
Args:
frame (cv2 image): a normal frame grab from camera or video
Outputs:
rects (array): detected faces as rectangles
'''
if self.detector is None:
self.detector = dlib.get_frontal_face_detector()
if frame is None:
return
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
#get all faces in the frame
rects = self.detector(gray, 0)
# to get the coords from a rect, use: (x, y, w, h) = face_utils.rect_to_bb(rects[0])
return rects
示例3: rect_to_bb
# 需要導入模塊: from imutils import face_utils [as 別名]
# 或者: from imutils.face_utils import rect_to_bb [as 別名]
def rect_to_bb(rect):
# we will take the bounding box predicted by dlib library
# and convert it into (x, y, w, h) where x, y are coordinates
# and w, h are width and height
x = rect.left()
y = rect.top()
w = rect.right() - x
h = rect.bottom() - y
return (x, y, w, h)
示例4: load_image
# 需要導入模塊: from imutils import face_utils [as 別名]
# 或者: from imutils.face_utils import rect_to_bb [as 別名]
def load_image(image_path, shape_predictor):
detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor(shape_predictor)
fa = FaceAligner(predictor, desiredFaceWidth=160)
image = cv2.imread(image_path, cv2.IMREAD_COLOR)
# image = imutils.resize(image, width=256)
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
rects = detector(gray, 2)
rect_nums = len(rects)
XY, aligned_images = [], []
if rect_nums == 0:
aligned_images.append(image)
return aligned_images, image, rect_nums, XY
else:
for i in range(rect_nums):
aligned_image = fa.align(image, gray, rects[i])
aligned_images.append(aligned_image)
(x, y, w, h) = rect_to_bb(rects[i])
image = cv2.rectangle(image, (x, y), (x + w, y + h), color=(255, 0, 0), thickness=2)
XY.append((x, y))
return np.array(aligned_images), image, rect_nums, XY
# def draw_label(image, point, ages, genders, font=cv2.FONT_HERSHEY_COMPLEX, font_scale=1, thickness=1):
# for i in range(len(point)):
# label = "{}, {}".format(int(ages[i]), "F" if genders[i] == 0 else "M")
# size = cv2.getTextSize(label, font, font_scale, thickness)[0]
# x, y = point[i]
# # cv2.rectangle(image, (x, y - size[1]), (x + size[0], y), (255, 0, 0), cv2.FILLED)
# cv2.putText(image, label, (x, np.max(y - 5, 0)), font, font_scale, (255, 255, 255), thickness)
示例5: no_age_gender_face_process
# 需要導入模塊: from imutils import face_utils [as 別名]
# 或者: from imutils.face_utils import rect_to_bb [as 別名]
def no_age_gender_face_process(self, frame, type):
'''
full process to extract face, ROI but no age and gender detection
Args:
frame (cv2 image): input frame
type (str): 5 or 68 landmarks
Outputs:
rects (array): detected faces as rectangles
face (cv2 image): face
shape (array): facial landmarks' co-ords in format of tuples (x,y)
aligned_face (cv2 image): face after alignment
aligned_shape (array): facial landmarks' co-ords of the aligned face in format of tuples (x,y)
'''
if(type=="5"):
shape, rects = self.get_landmarks(frame, "5")
if shape is None:
return None
else:
shape, rects = self.get_landmarks(frame, "68")
if shape is None:
return None
(x, y, w, h) = face_utils.rect_to_bb(rects[0])
face = frame[y:y+h,x:x+w]
aligned_face,aligned_shape = self.face_alignment(frame, shape)
# if(type=="5"):
# aligned_shape, rects_2 = self.get_landmarks(aligned_face, "5")
# if aligned_shape is None:
# return None
# else:
# aligned_shape, rects_2 = self.get_landmarks(aligned_face, "68")
# if aligned_shape is None:
# return None
return rects, face, shape, aligned_face, aligned_shape
示例6: main
# 需要導入模塊: from imutils import face_utils [as 別名]
# 或者: from imutils.face_utils import rect_to_bb [as 別名]
def main():
create_folder(FACE_DIR)
while True:
name=input("EnterName: ")
face_id = input("Enter id for face: ")
try:
face_id = int(face_id)
face_folder = FACE_DIR + str(face_id) + "/"
create_folder(face_folder)
break
except:
print("Invalid input. id must be int")
continue
# get beginning image number
while True:
init_img_no = input("Starting img no.: ")
try:
init_img_no = int(init_img_no)
break
except:
print("Starting img no should be integer...")
continue
img_no = init_img_no
cap = cv2.VideoCapture(0)
total_imgs = 10
while True:
ret, img = cap.read()
img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
faces = detector(img_gray)
if len(faces) == 1:
face = faces[0]
(x, y, w, h) = face_utils.rect_to_bb(face)
face_img = img_gray[y-50:y + h+100, x-50:x + w+100]
face_aligned = face_aligner.align(img, img_gray, face)
face_img = face_aligned
img_path = face_folder +name+ str(img_no) + ".jpg"
cv2.imwrite(img_path, face_img)
cv2.rectangle(img, (x, y), (x + w, y + h), (255, 255, 0), 3)
cv2.imshow("aligned", face_img)
img_no += 1
cv2.imshow("Saving", img)
cv2.waitKey(1)
if img_no == init_img_no + total_imgs:
break
cap.release()
示例7: flow_process
# 需要導入模塊: from imutils import face_utils [as 別名]
# 或者: from imutils.face_utils import rect_to_bb [as 別名]
def flow_process(frame):
display_frame = frame.copy()
rects = last_rects
age = last_age
gender = last_gender
shape = last_shape
# convert the frame to gray scale before performing face detection
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
# get all faces as rectangles every 3 frames
if(i%3==0):
rects = face_ut.face_detection(frame)
#check if there is any face in the frame, if not, show the frame and move to the next frame
if len(rects)<0:
return frame, None
# draw face rectangle, only grab one face in the frame
(x, y, w, h) = face_utils.rect_to_bb(rects[0])
cv2.rectangle(display_frame,(x,y),(x+w,y+h),(255,0,0),2)
# crop the face from frame
face = frame[y:y+h,x:x+w]
if(i%6==0):
# detect age and gender and put it into the frame every 6 frames
age, gender = face_ut.age_gender_detection(face)
overlay_text = "%s, %s" % (gender, age)
cv2.putText(display_frame, overlay_text ,(x,y-15), cv2.FONT_HERSHEY_SIMPLEX, 1,(255,0,0),2,cv2.LINE_AA)
if(i%3==0):
# get 68 facial landmarks and draw it into the face every 3 frames
shape = face_ut.get_landmarks(frame, "5")
for (x, y) in shape:
cv2.circle(face, (x, y), 1, (0, 0, 255), -1)
# get the mask of the face
remapped_landmarks = face_ut.facial_landmarks_remap(shape)
mask = np.zeros((face.shape[0], face.shape[1]))
cv2.fillConvexPoly(mask, remapped_landmarks[0:27], 1)
aligned_face = face_ut.face_alignment(frame, shape)
aligned_shape = face_ut.get_landmarks(aligned_face, "68")
cv2.rectangle(aligned_face, (aligned_shape[54][0], aligned_shape[29][1]), #draw rectangle on right and left cheeks
(aligned_shape[12][0],aligned_shape[33][1]), (0,255,0), 0)
cv2.rectangle(aligned_face, (aligned_shape[4][0], aligned_shape[29][1]),
(aligned_shape[48][0],aligned_shape[33][1]), (0,255,0), 0)
#assign to last params
last_rects = rects
last_age = age
last_gender = gender
last_shape = shape
return display_frame, aligned_face