當前位置: 首頁>>代碼示例>>Python>>正文


Python imgaug.imresize_single_image方法代碼示例

本文整理匯總了Python中imgaug.imresize_single_image方法的典型用法代碼示例。如果您正苦於以下問題:Python imgaug.imresize_single_image方法的具體用法?Python imgaug.imresize_single_image怎麽用?Python imgaug.imresize_single_image使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在imgaug的用法示例。


在下文中一共展示了imgaug.imresize_single_image方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: draw_heatmap

# 需要導入模塊: import imgaug [as 別名]
# 或者: from imgaug import imresize_single_image [as 別名]
def draw_heatmap(img, heatmap, alpha=0.5):
    """Draw a heatmap overlay over an image."""
    assert len(heatmap.shape) == 2 or \
        (len(heatmap.shape) == 3 and heatmap.shape[2] == 1)
    assert img.dtype in [np.uint8, np.int32, np.int64]
    assert heatmap.dtype in [np.float32, np.float64]

    if img.shape[0:2] != heatmap.shape[0:2]:
        heatmap_rs = np.clip(heatmap * 255, 0, 255).astype(np.uint8)
        heatmap_rs = ia.imresize_single_image(
            heatmap_rs[..., np.newaxis],
            img.shape[0:2],
            interpolation="nearest"
        )
        heatmap = np.squeeze(heatmap_rs) / 255.0

    cmap = plt.get_cmap('jet')
    heatmap_cmapped = cmap(heatmap)
    heatmap_cmapped = np.delete(heatmap_cmapped, 3, 2)
    heatmap_cmapped = heatmap_cmapped * 255
    mix = (1-alpha) * img + alpha * heatmap_cmapped
    mix = np.clip(mix, 0, 255).astype(np.uint8)
    return mix 
開發者ID:aleju,項目名稱:cat-bbs,代碼行數:25,代碼來源:common.py

示例2: _perspective_transform_augment_images

# 需要導入模塊: import imgaug [as 別名]
# 或者: from imgaug import imresize_single_image [as 別名]
def _perspective_transform_augment_images(self, images, random_state, parents, hooks):
    result = images
    if not self.keep_size:
        result = list(result)

    matrices, max_heights, max_widths = self._create_matrices(
        [image.shape for image in images],
        random_state
    )

    for i, (M, max_height, max_width) in enumerate(zip(matrices, max_heights, max_widths)):
        warped = cv2.warpPerspective(images[i], M, (max_width, max_height))
        if warped.ndim == 2 and images[i].ndim == 3:
            warped = np.expand_dims(warped, 2)
        if self.keep_size:
            h, w = images[i].shape[0:2]
            warped = ia.imresize_single_image(warped, (h, w))

        result[i] = warped

    return result 
開發者ID:neptune-ai,項目名稱:open-solution-salt-identification,代碼行數:23,代碼來源:augmentation.py

示例3: main

# 需要導入模塊: import imgaug [as 別名]
# 或者: from imgaug import imresize_single_image [as 別名]
def main():
    augs = [
        iaa.Rain(speed=(0.1, 0.3)),
        iaa.Rain(),
        iaa.Rain(drop_size=(0.1, 0.2))
    ]

    image = imageio.imread(
        ("https://upload.wikimedia.org/wikipedia/commons/8/89/"
         "Kukle%2CCzech_Republic..jpg"),
        format="jpg")

    for aug, size in zip(augs, [0.1, 0.2, 1.0]):
        image_rs = ia.imresize_single_image(image, size, "cubic")
        print(image_rs.shape)

        images_aug = aug.augment_images([image_rs] * 64)
        ia.imshow(ia.draw_grid(images_aug)) 
開發者ID:aleju,項目名稱:imgaug,代碼行數:20,代碼來源:check_rain.py

示例4: load_images

# 需要導入模塊: import imgaug [as 別名]
# 或者: from imgaug import imresize_single_image [as 別名]
def load_images(n_batches=10, sleep=0.0):
    batch_size = 4
    astronaut = data.astronaut()
    astronaut = ia.imresize_single_image(astronaut, (64, 64))
    kps = ia.KeypointsOnImage([ia.Keypoint(x=15, y=25)], shape=astronaut.shape)
    counter = 0
    for i in range(n_batches):
        batch_images = []
        batch_kps = []
        for b in range(batch_size):
            astronaut_text = ia.draw_text(astronaut, x=0, y=0, text="%d" % (counter,), color=[0, 255, 0], size=16)
            batch_images.append(astronaut_text)
            batch_kps.append(kps)
            counter += 1
        batch = ia.Batch(
            images=np.array(batch_images, dtype=np.uint8),
            keypoints=batch_kps
        )
        yield batch
        if sleep > 0:
            time.sleep(sleep) 
開發者ID:aleju,項目名稱:imgaug,代碼行數:23,代碼來源:check_background_augmentation.py

示例5: _binarize_mask

# 需要導入模塊: import imgaug [as 別名]
# 或者: from imgaug import imresize_single_image [as 別名]
def _binarize_mask(cls, mask, arr_height, arr_width):
        # Average over channels, resize to heatmap/segmap array size
        # (+clip for cubic interpolation). We can use none-NN interpolation
        # for segmaps here as this is just the mask and not the segmap
        # array.
        mask_3d = np.atleast_3d(mask)

        # masks with zero-sized axes crash in np.average() and cannot be
        # upscaled in imresize_single_image()
        if mask.size == 0:
            mask_rs = np.zeros((arr_height, arr_width),
                               dtype=np.float32)
        else:
            mask_avg = (
                np.average(mask_3d, axis=2) if mask_3d.shape[2] > 0 else 1.0)
            mask_rs = ia.imresize_single_image(mask_avg,
                                               (arr_height, arr_width))
        mask_arr = iadt.clip_(mask_rs, 0, 1.0)
        mask_arr_binarized = (mask_arr >= 0.5)
        return mask_arr_binarized

    # Added in 0.4.0. 
開發者ID:aleju,項目名稱:imgaug,代碼行數:24,代碼來源:blend.py

示例6: _augment_images_by_samples

# 需要導入模塊: import imgaug [as 別名]
# 或者: from imgaug import imresize_single_image [as 別名]
def _augment_images_by_samples(self, images, samples):
        if not self.keep_size:
            images = list(images)

        kernel_sizes_h, kernel_sizes_w = samples

        gen = enumerate(zip(images, kernel_sizes_h, kernel_sizes_w))
        for i, (image, ksize_h, ksize_w) in gen:
            if ksize_h >= 2 or ksize_w >= 2:
                image_pooled = self._pool_image(
                    image, ksize_h, ksize_w)
                if self.keep_size:
                    image_pooled = ia.imresize_single_image(
                        image_pooled, image.shape[0:2])
                images[i] = image_pooled

        return images

    # Added in 0.4.0. 
開發者ID:aleju,項目名稱:imgaug,代碼行數:21,代碼來源:pooling.py

示例7: _augment_single_image

# 需要導入模塊: import imgaug [as 別名]
# 或者: from imgaug import imresize_single_image [as 別名]
def _augment_single_image(self, image, random_state):
        rss = random_state.duplicate(2)
        orig_shape = image.shape
        image = _ensure_image_max_size(image, self.max_size, self.interpolation)

        cell_coordinates = self.points_sampler.sample_points([image], rss[0])[0]
        p_replace = self.p_replace.draw_samples((len(cell_coordinates),),
                                                rss[1])
        replace_mask = (p_replace > 0.5)

        image_aug = segment_voronoi(image, cell_coordinates, replace_mask)

        if orig_shape != image_aug.shape:
            image_aug = ia.imresize_single_image(
                image_aug,
                orig_shape[0:2],
                interpolation=self.interpolation)

        return image_aug 
開發者ID:aleju,項目名稱:imgaug,代碼行數:21,代碼來源:segmentation.py

示例8: load_images

# 需要導入模塊: import imgaug [as 別名]
# 或者: from imgaug import imresize_single_image [as 別名]
def load_images():
    batch_size = 4
    astronaut = data.astronaut()
    astronaut = ia.imresize_single_image(astronaut, (64, 64))
    kps = ia.KeypointsOnImage([ia.Keypoint(x=15, y=25)], shape=astronaut.shape)
    counter = 0
    for i in range(10):
        batch_images = []
        batch_kps = []
        for b in range(batch_size):
            astronaut_text = ia.draw_text(astronaut, x=0, y=0, text="%d" % (counter,), color=[0, 255, 0], size=16)
            batch_images.append(astronaut_text)
            batch_kps.append(kps)
            counter += 1
        batch = ia.Batch(
            images=np.array(batch_images, dtype=np.uint8),
            keypoints=batch_kps
        )
        yield batch 
開發者ID:JoshuaPiinRueyPan,項目名稱:ViolenceDetection,代碼行數:21,代碼來源:check_background_augmentation.py

示例9: set_canvas_background

# 需要導入模塊: import imgaug [as 別名]
# 或者: from imgaug import imresize_single_image [as 別名]
def set_canvas_background(self, image):
        if self.background_label is None:
            # initialize background image label (first call)
            #img = self.current_state.screenshot_rs
            #bg_img_tk = numpy_to_tk_image(np.zeros(img.shape))
            img_heatmap = self._generate_heatmap()
            img_heatmap_rs = ia.imresize_single_image(img_heatmap, (img_heatmap.shape[0]*ZOOM_FACTOR, img_heatmap.shape[1]*ZOOM_FACTOR), interpolation="nearest")
            bg_img_tk = numpy_to_tk_image(img_heatmap_rs)
            self.background_label = Tkinter.Label(self.canvas, image=bg_img_tk)
            self.background_label.place(x=0, y=0, relwidth=1, relheight=1, anchor=Tkinter.NW)
            self.background_label.image = bg_img_tk

        #print("image size", image.shape)
        #print("image height, width", image.to_array().shape)
        image_rs = ia.imresize_single_image(image, (image.shape[0]*ZOOM_FACTOR, image.shape[1]*ZOOM_FACTOR), interpolation="nearest")
        image_tk = numpy_to_tk_image(image_rs)
        self.background_label.configure(image=image_tk)
        self.background_label.image = image_tk 
開發者ID:aleju,項目名稱:self-driving-truck,代碼行數:20,代碼來源:annotate_street_boundaries.py

示例10: set_canvas_background

# 需要導入模塊: import imgaug [as 別名]
# 或者: from imgaug import imresize_single_image [as 別名]
def set_canvas_background(self, image):
        if self.background_label is None:
            # initialize background image label (first call)
            #img = self.current_state.screenshot_rs
            #bg_img_tk = numpy_to_tk_image(np.zeros(img.shape))
            img_heatmap = self._generate_heatmap()
            img_heatmap_rs = ia.imresize_single_image(img_heatmap, (img_heatmap.shape[0]*self.zoom_factor, img_heatmap.shape[1]*self.zoom_factor), interpolation="nearest")
            bg_img_tk = numpy_to_tk_image(img_heatmap_rs)
            self.background_label = Tkinter.Label(self.canvas, image=bg_img_tk)
            self.background_label.place(x=0, y=0, relwidth=1, relheight=1, anchor=Tkinter.NW)
            self.background_label.image = bg_img_tk

        #print("image size", image.shape)
        #print("image height, width", image.to_array().shape)
        image_rs = ia.imresize_single_image(image, (image.shape[0]*self.zoom_factor, image.shape[1]*self.zoom_factor), interpolation="nearest")
        image_tk = numpy_to_tk_image(image_rs)
        self.background_label.configure(image=image_tk)
        self.background_label.image = image_tk 
開發者ID:aleju,項目名稱:self-driving-truck,代碼行數:20,代碼來源:annotate_attributes.py

示例11: draw_heatmap_overlay

# 需要導入模塊: import imgaug [as 別名]
# 或者: from imgaug import imresize_single_image [as 別名]
def draw_heatmap_overlay(img, heatmap, alpha=0.5):
    #assert img.shape[0:2] == heatmap.shape[0:2]
    assert len(heatmap.shape) == 2 or (heatmap.ndim == 3 and heatmap.shape[2] == 1)
    assert img.dtype in [np.uint8, np.int32, np.int64]
    assert heatmap.dtype in [np.float32, np.float64]

    if heatmap.ndim == 3 and heatmap.shape[2] == 1:
        heatmap = np.squeeze(heatmap)

    if img.shape[0:2] != heatmap.shape[0:2]:
        heatmap_rs = np.clip(heatmap * 255, 0, 255).astype(np.uint8)
        heatmap_rs = ia.imresize_single_image(heatmap_rs[..., np.newaxis], img.shape[0:2], interpolation="nearest")
        heatmap = np.squeeze(heatmap_rs) / 255.0

    cmap = plt.get_cmap('jet')
    heatmap_cmapped = cmap(heatmap)
    #img_heatmaps_cmapped = img_heatmaps_cmapped[:, :, 0:3]
    heatmap_cmapped = np.delete(heatmap_cmapped, 3, 2)
    #heatmap_cmapped = np.clip(heatmap_cmapped * 255, 0, 255).astype(np.uint8)
    heatmap_cmapped = heatmap_cmapped * 255
    mix = (1-alpha) * img + alpha * heatmap_cmapped
    mix = np.clip(mix, 0, 255).astype(np.uint8)
    return mix 
開發者ID:aleju,項目名稱:self-driving-truck,代碼行數:25,代碼來源:util.py

示例12: imresize_sidelen

# 需要導入模塊: import imgaug [as 別名]
# 或者: from imgaug import imresize_single_image [as 別名]
def imresize_sidelen(image, maxval, pick_func=min, interpolation=None, force_even_sidelens=False):
    """Resize an image so that one of its size is not larger than a maximum
    value."""
    height, width = image.shape[0], image.shape[1]
    currval = pick_func(height, width)
    if currval < maxval:
        if force_even_sidelens:
            newheight = height
            newwidth = width
            if newheight % 2 != 0:
                newheight += 1
            if newwidth % 2 != 0:
                newwidth += 1
            if newheight == height and newwidth == width:
                return np.copy(image)
            else:
                return ia.imresize_single_image(
                    image,
                    (newheight, newwidth),
                    interpolation=interpolation
                )
        else:
            return np.copy(image)
    else:
        scale_factor = maxval / currval
        newheight, newwidth = int(height * scale_factor), int(width * scale_factor)
        if force_even_sidelens:
            if newheight % 2 != 0:
                newheight += 1
            if newwidth % 2 != 0:
                newwidth += 1
        return ia.imresize_single_image(
            image,
            (newheight, newwidth),
            interpolation=interpolation
        ) 
開發者ID:aleju,項目名稱:cat-bbs,代碼行數:38,代碼來源:common.py

示例13: find_bbs

# 需要導入模塊: import imgaug [as 別名]
# 或者: from imgaug import imresize_single_image [as 別名]
def find_bbs(img, model, conf_threshold, input_size):
    """Find bounding boxes in an image."""
    # pad image so that its square
    img_pad, (pad_top, pad_right, pad_bottom, pad_left) = to_aspect_ratio_add(img, 1.0, return_paddings=True)

    # resize padded image to desired input size
    # "linear" interpolation seems to be enough here for 400x400 or larger images
    # change to "area" or "cubic" for marginally better quality
    img_rs = ia.imresize_single_image(img_pad, (input_size, input_size), interpolation="linear")

    # convert to torch-ready input variable
    inputs_np = (np.array([img_rs])/255.0).astype(np.float32).transpose(0, 3, 1, 2)
    inputs = torch.from_numpy(inputs_np)
    inputs = Variable(inputs, volatile=True)
    if GPU >= 0:
        inputs = inputs.cuda(GPU)

    # apply model and measure the model's time
    time_start = time.time()
    outputs_pred = model(inputs)
    time_req = time.time() - time_start

    # process the model's output (i.e. convert heatmaps to BBs)
    result = ModelResult(
        outputs_pred,
        inputs_np,
        img,
        (pad_top, pad_right, pad_bottom, pad_left)
    )
    bbs = result.get_bbs()

    return bbs, time_req 
開發者ID:aleju,項目名稱:cat-bbs,代碼行數:34,代碼來源:predict_video.py

示例14: main

# 需要導入模塊: import imgaug [as 別名]
# 或者: from imgaug import imresize_single_image [as 別名]
def main():
    image = data.astronaut()
    image = ia.imresize_single_image(image, (HEIGHT, WIDTH))

    kps = []
    for y in range(NB_ROWS):
        ycoord = BB_Y1 + int(y * (BB_Y2 - BB_Y1) / (NB_COLS - 1))
        for x in range(NB_COLS):
            xcoord = BB_X1 + int(x * (BB_X2 - BB_X1) / (NB_ROWS - 1))
            kp = (xcoord, ycoord)
            kps.append(kp)
    kps = set(kps)
    kps = [ia.Keypoint(x=xcoord, y=ycoord) for (xcoord, ycoord) in kps]
    kps = ia.KeypointsOnImage(kps, shape=image.shape)

    bb = ia.BoundingBox(x1=BB_X1, x2=BB_X2, y1=BB_Y1, y2=BB_Y2)
    bbs = ia.BoundingBoxesOnImage([bb], shape=image.shape)

    seq = iaa.Affine(rotate=45)
    seq_det = seq.to_deterministic()
    image_aug = seq_det.augment_image(image)
    kps_aug = seq_det.augment_keypoints([kps])[0]
    bbs_aug = seq_det.augment_bounding_boxes([bbs])[0]

    image_before = np.copy(image)
    image_before = kps.draw_on_image(image_before)
    image_before = bbs.draw_on_image(image_before)

    image_after = np.copy(image_aug)
    image_after = kps_aug.draw_on_image(image_after)
    image_after = bbs_aug.draw_on_image(image_after)

    ia.imshow(np.hstack([image_before, image_after]))
    imageio.imwrite("bb_aug.jpg", np.hstack([image_before, image_after])) 
開發者ID:aleju,項目名稱:imgaug,代碼行數:36,代碼來源:check_bb_augmentation.py

示例15: main

# 需要導入模塊: import imgaug [as 別名]
# 或者: from imgaug import imresize_single_image [as 別名]
def main():
    for size in [0.1, 0.2, 1.0]:
        image = imageio.imread("https://upload.wikimedia.org/wikipedia/commons/8/89/Kukle%2CCzech_Republic..jpg",
                               format="jpg")
        image = ia.imresize_single_image(image, size, "cubic")
        print(image.shape)
        augs = [
            ("iaa.Fog()", iaa.Fog())
        ]

        for descr, aug in augs:
            print(descr)
            images_aug = aug.augment_images([image] * 64)
            ia.imshow(ia.draw_grid(images_aug)) 
開發者ID:aleju,項目名稱:imgaug,代碼行數:16,代碼來源:check_fog.py


注:本文中的imgaug.imresize_single_image方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。