當前位置: 首頁>>代碼示例>>Python>>正文


Python augmenters.Sometimes方法代碼示例

本文整理匯總了Python中imgaug.augmenters.Sometimes方法的典型用法代碼示例。如果您正苦於以下問題:Python augmenters.Sometimes方法的具體用法?Python augmenters.Sometimes怎麽用?Python augmenters.Sometimes使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在imgaug.augmenters的用法示例。


在下文中一共展示了augmenters.Sometimes方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _load_augmentation_aug_non_geometric

# 需要導入模塊: from imgaug import augmenters [as 別名]
# 或者: from imgaug.augmenters import Sometimes [as 別名]
def _load_augmentation_aug_non_geometric():
    return iaa.Sequential([
        iaa.Sometimes(0.3, iaa.Multiply((0.5, 1.5), per_channel=0.5)),
        iaa.Sometimes(0.2, iaa.JpegCompression(compression=(70, 99))),
        iaa.Sometimes(0.2, iaa.GaussianBlur(sigma=(0, 3.0))),
        iaa.Sometimes(0.2, iaa.MotionBlur(k=15, angle=[-45, 45])),
        iaa.Sometimes(0.2, iaa.MultiplyHue((0.5, 1.5))),
        iaa.Sometimes(0.2, iaa.MultiplySaturation((0.5, 1.5))),
        iaa.Sometimes(0.34, iaa.MultiplyHueAndSaturation((0.5, 1.5),
                                                         per_channel=True)),
        iaa.Sometimes(0.34, iaa.Grayscale(alpha=(0.0, 1.0))),
        iaa.Sometimes(0.2, iaa.ChangeColorTemperature((1100, 10000))),
        iaa.Sometimes(0.1, iaa.GammaContrast((0.5, 2.0))),
        iaa.Sometimes(0.2, iaa.SigmoidContrast(gain=(3, 10),
                                               cutoff=(0.4, 0.6))),
        iaa.Sometimes(0.1, iaa.CLAHE()),
        iaa.Sometimes(0.1, iaa.HistogramEqualization()),
        iaa.Sometimes(0.2, iaa.LinearContrast((0.5, 2.0), per_channel=0.5)),
        iaa.Sometimes(0.1, iaa.Emboss(alpha=(0, 1.0), strength=(0, 2.0)))
    ]) 
開發者ID:divamgupta,項目名稱:image-segmentation-keras,代碼行數:22,代碼來源:augmentation.py

示例2: __init__

# 需要導入模塊: from imgaug import augmenters [as 別名]
# 或者: from imgaug.augmenters import Sometimes [as 別名]
def __init__(self):
        self.seq = iaa.Sequential([
            iaa.Sometimes(0.5, iaa.OneOf([
                iaa.GaussianBlur((0, 3.0)),  # blur images with a sigma between 0 and 3.0
                iaa.AverageBlur(k=(2, 7)),  # blur image using local means with kernel sizes between 2 and 7
                iaa.MedianBlur(k=(3, 11)),  # blur image using local medians with kernel sizes between 2 and 7
            ])),
            iaa.Sometimes(0.5, iaa.AdditiveGaussianNoise(loc=0, scale=(0.0, 0.05 * 255), per_channel=0.5)),
            iaa.Sometimes(0.5, iaa.Add((-10, 10), per_channel=0.5)),
            iaa.Sometimes(0.5, iaa.AddToHueAndSaturation((-20, 20))),
            iaa.Sometimes(0.5, iaa.FrequencyNoiseAlpha(
                exponent=(-4, 0),
                first=iaa.Multiply((0.5, 1.5), per_channel=True),
                second=iaa.LinearContrast((0.5, 2.0))
            )),
            iaa.Sometimes(0.5, iaa.PiecewiseAffine(scale=(0.01, 0.05))),
            iaa.Sometimes(0.5, iaa.PerspectiveTransform(scale=(0.01, 0.1)))
        ], random_order=True) 
開發者ID:WenmuZhou,項目名稱:crnn.gluon,代碼行數:20,代碼來源:augment.py

示例3: __init__

# 需要導入模塊: from imgaug import augmenters [as 別名]
# 或者: from imgaug.augmenters import Sometimes [as 別名]
def __init__(self, augmentation_rate):
        self.augs = iaa.Sometimes(
            augmentation_rate,
            iaa.SomeOf(
                (4, 7),
                [
                    iaa.Affine(rotate=(-10, 10)),
                    iaa.Fliplr(0.2),
                    iaa.AverageBlur(k=(2, 10)),
                    iaa.Add((-10, 10), per_channel=0.5),
                    iaa.Multiply((0.75, 1.25), per_channel=0.5),
                    iaa.ContrastNormalization((0.5, 2.0), per_channel=0.5),
                    iaa.Crop(px=(0, 20))
                ],
                random_order=True
            )
        ) 
開發者ID:Giphy,項目名稱:celeb-detection-oss,代碼行數:19,代碼來源:img_augmentor.py

示例4: init_augmentations

# 需要導入模塊: from imgaug import augmenters [as 別名]
# 或者: from imgaug.augmenters import Sometimes [as 別名]
def init_augmentations(self):
        if self.transform_probability > 0 and self.use_imgaug:
            augmentations = iaa.Sometimes(
                self.transform_probability,
                iaa.Sequential([
                    iaa.SomeOf(
                        (1, None),
                        [
                            iaa.AddToHueAndSaturation(iap.Uniform(-20, 20), per_channel=True),
                            iaa.GaussianBlur(sigma=(0, 1.0)),
                            iaa.LinearContrast((0.75, 1.0)),
                            iaa.PiecewiseAffine(scale=(0.01, 0.02), mode='edge'),
                        ],
                        random_order=True
                    ),
                    iaa.Resize(
                        {"height": (16, self.image_size.height), "width": "keep-aspect-ratio"},
                        interpolation=imgaug.ALL
                    ),
                ])
            )
        else:
            augmentations = None
        return augmentations 
開發者ID:Bartzi,項目名稱:kiss,代碼行數:26,代碼來源:image_dataset.py

示例5: chapter_augmenters_sometimes

# 需要導入模塊: from imgaug import augmenters [as 別名]
# 或者: from imgaug.augmenters import Sometimes [as 別名]
def chapter_augmenters_sometimes():
    aug = iaa.Sometimes(0.5, iaa.GaussianBlur(sigma=2.0))
    run_and_save_augseq(
        "sometimes.jpg", aug,
        [ia.quokka(size=(64, 64)) for _ in range(16)], cols=8, rows=2,
        seed=2
    )

    aug = iaa.Sometimes(
        0.5,
        iaa.GaussianBlur(sigma=2.0),
        iaa.Sequential([iaa.Affine(rotate=45), iaa.Sharpen(alpha=1.0)])
    )
    run_and_save_augseq(
        "sometimes_if_else.jpg", aug,
        [ia.quokka(size=(64, 64)) for _ in range(16)], cols=8, rows=2
    ) 
開發者ID:JoshuaPiinRueyPan,項目名稱:ViolenceDetection,代碼行數:19,代碼來源:generate_documentation_images.py

示例6: _rectify_augmenter

# 需要導入模塊: from imgaug import augmenters [as 別名]
# 或者: from imgaug.augmenters import Sometimes [as 別名]
def _rectify_augmenter(self, augment):
        import netharn as nh
        if augment is True:
            augment = 'simple'

        if not augment:
            augmenter = None
        elif augment == 'simple':
            augmenter = iaa.Sequential([
                iaa.Crop(percent=(0, .2)),
                iaa.Fliplr(p=.5)
            ])
        elif augment == 'complex':
            augmenter = iaa.Sequential([
                iaa.Sometimes(0.2, nh.data.transforms.HSVShift(hue=0.1, sat=1.5, val=1.5)),
                iaa.Crop(percent=(0, .2)),
                iaa.Fliplr(p=.5)
            ])
        else:
            raise KeyError('Unknown augmentation {!r}'.format(augment))
        return augmenter 
開發者ID:Erotemic,項目名稱:netharn,代碼行數:23,代碼來源:sseg_camvid.py

示例7: _rectify_augmenter

# 需要導入模塊: from imgaug import augmenters [as 別名]
# 或者: from imgaug.augmenters import Sometimes [as 別名]
def _rectify_augmenter(self, augmenter):
        import netharn as nh
        if augmenter is True:
            augmenter = 'simple'

        if not augmenter:
            augmenter = None
        elif augmenter == 'simple':
            augmenter = iaa.Sequential([
                iaa.Crop(percent=(0, .2)),
                iaa.Fliplr(p=.5)
            ])
        elif augmenter == 'complex':
            augmenter = iaa.Sequential([
                iaa.Sometimes(0.2, nh.data.transforms.HSVShift(hue=0.1, sat=1.5, val=1.5)),
                iaa.Crop(percent=(0, .2)),
                iaa.Fliplr(p=.5)
            ])
        else:
            raise KeyError('Unknown augmentation {!r}'.format(self.augment))
        return augmenter 
開發者ID:Erotemic,項目名稱:netharn,代碼行數:23,代碼來源:segmentation.py

示例8: __init__

# 需要導入模塊: from imgaug import augmenters [as 別名]
# 或者: from imgaug.augmenters import Sometimes [as 別名]
def __init__(self,data_dir, back_dir,
                 batch_size=50,gan=True,imsize=128,
                 res_x=640,res_y=480,
                 **kwargs):
        '''
        data_dir: Folder that contains cropped image+xyz
        back_dir: Folder that contains random background images
            batch_size: batch size for training
        gan: if False, gt for GAN is not yielded
        '''
        self.data_dir = data_dir
        self.back_dir = back_dir
        self.imsize=imsize
        self.batch_size = batch_size
        self.gan = gan
        self.backfiles = os.listdir(back_dir)
        data_list = os.listdir(data_dir)
        self.datafiles=[]
        self.res_x=res_x
        self.res_y=res_y

        for file in data_list:
            if(file.endswith(".npy")):
                self.datafiles.append(file)

        self.n_data = len(self.datafiles)
        self.n_background = len(self.backfiles)
        print("Total training views:", self.n_data)

        self.seq_syn= iaa.Sequential([
                                    iaa.WithChannels(0, iaa.Add((-15, 15))),
                                    iaa.WithChannels(1, iaa.Add((-15, 15))),
                                    iaa.WithChannels(2, iaa.Add((-15, 15))),
                                    iaa.ContrastNormalization((0.8, 1.3)),
                                    iaa.Multiply((0.8, 1.2),per_channel=0.5),
                                    iaa.GaussianBlur(sigma=(0.0, 0.5)),
                                    iaa.Sometimes(0.1, iaa.AdditiveGaussianNoise(scale=10, per_channel=True)),
                                    iaa.Sometimes(0.5, iaa.ContrastNormalization((0.5, 2.2), per_channel=0.3)),
                                    ], random_order=True) 
開發者ID:kirumang,項目名稱:Pix2Pose,代碼行數:41,代碼來源:data_io.py

示例9: _load_augmentation_aug_geometric

# 需要導入模塊: from imgaug import augmenters [as 別名]
# 或者: from imgaug.augmenters import Sometimes [as 別名]
def _load_augmentation_aug_geometric():
    return iaa.OneOf([
        iaa.Sequential([iaa.Fliplr(0.5), iaa.Flipud(0.2)]),
        iaa.CropAndPad(percent=(-0.05, 0.1),
                       pad_mode='constant',
                       pad_cval=(0, 255)),
        iaa.Crop(percent=(0.0, 0.1)),
        iaa.Crop(percent=(0.3, 0.5)),
        iaa.Crop(percent=(0.3, 0.5)),
        iaa.Crop(percent=(0.3, 0.5)),
        iaa.Sequential([
            iaa.Affine(
                    # scale images to 80-120% of their size,
                    # individually per axis
                    scale={"x": (0.8, 1.2), "y": (0.8, 1.2)},
                    # translate by -20 to +20 percent (per axis)
                    translate_percent={"x": (-0.2, 0.2), "y": (-0.2, 0.2)},
                    rotate=(-45, 45),  # rotate by -45 to +45 degrees
                    shear=(-16, 16),  # shear by -16 to +16 degrees
                    # use nearest neighbour or bilinear interpolation (fast)
                    order=[0, 1],
                    # if mode is constant, use a cval between 0 and 255
                    mode='constant',
                    cval=(0, 255),
                    # use any of scikit-image's warping modes
                    # (see 2nd image from the top for examples)
            ),
            iaa.Sometimes(0.3, iaa.Crop(percent=(0.3, 0.5)))])
    ]) 
開發者ID:divamgupta,項目名稱:image-segmentation-keras,代碼行數:31,代碼來源:augmentation.py

示例10: _load_augmentation_aug_all2

# 需要導入模塊: from imgaug import augmenters [as 別名]
# 或者: from imgaug.augmenters import Sometimes [as 別名]
def _load_augmentation_aug_all2():
    return iaa.Sequential([
        iaa.Sometimes(0.65, _load_augmentation_aug_non_geometric()),
        iaa.Sometimes(0.65, _load_augmentation_aug_geometric())
    ]) 
開發者ID:divamgupta,項目名稱:image-segmentation-keras,代碼行數:7,代碼來源:augmentation.py

示例11: example_using_augmenters_only_once

# 需要導入模塊: from imgaug import augmenters [as 別名]
# 或者: from imgaug.augmenters import Sometimes [as 別名]
def example_using_augmenters_only_once():
    print("Example: Using Augmenters Only Once")
    from imgaug import augmenters as iaa
    import numpy as np

    images = np.random.randint(0, 255, (16, 128, 128, 3), dtype=np.uint8)

    # always horizontally flip each input image
    images_aug = iaa.Fliplr(1.0)(images=images)

    # vertically flip each input image with 90% probability
    images_aug = iaa.Flipud(0.9)(images=images)

    # blur 50% of all images using a gaussian kernel with a sigma of 3.0
    images_aug = iaa.Sometimes(0.5, iaa.GaussianBlur(3.0))(images=images) 
開發者ID:aleju,項目名稱:imgaug,代碼行數:17,代碼來源:check_readme_examples.py

示例12: apply_augment_sequence

# 需要導入模塊: from imgaug import augmenters [as 別名]
# 或者: from imgaug.augmenters import Sometimes [as 別名]
def apply_augment_sequence(image_set_x, image_set_y):
	"""
		Randomly flip and rotate the images in both set with deterministic order.  This turns 1 image into 8 images.

		Parameters:
			image_set_x: List of Images (X) to augment
			image_set_y: List of corresponding Y image to augment in the same deterministic order applied to image_set_x

		Returns:
			image_setx_aug, image_sety_aug : augmented versions of the inputs
	"""

	# Sometimes(0.5, ...) applies the given augmenter in 50% of all cases,
	# e.g. Sometimes(0.5, GaussianBlur(0.3)) would blur roughly every second image.
	sometimes = lambda aug: iaa.Sometimes(0.5, aug)

	seq = iaa.Sequential(
		[
			iaa.Fliplr(0.5),
			iaa.Flipud(0.5),
			sometimes(iaa.Affine(
				rotate=(90, 90),
			))
		],
		random_order=False)
	seq_det = seq.to_deterministic()
	image_setx_aug = seq_det.augment_images(image_set_x)
	image_sety_aug = seq_det.augment_images(image_set_y)
	return image_setx_aug, image_sety_aug 
開發者ID:jackkwok,項目名稱:neural-road-inspector,代碼行數:31,代碼來源:augmentation.py

示例13: augment_soft

# 需要導入模塊: from imgaug import augmenters [as 別名]
# 或者: from imgaug.augmenters import Sometimes [as 別名]
def augment_soft(img):
    # Sometimes(0.5, ...) applies the given augmenter in 50% of all cases,
    # e.g. Sometimes(0.5, GaussianBlur(0.3)) would blur roughly every second image.
    sometimes = lambda aug: iaa.Sometimes(0.5, aug)

    # Define our sequence of augmentation steps that will be applied to every image
    # All augmenters with per_channel=0.5 will sample one value _per image_
    # in 50% of all cases. In all other cases they will sample new values
    # _per channel_.
    seq = iaa.Sequential(
        [
            # apply the following augmenters to most images
            iaa.Fliplr(0.5), # horizontally flip 50% of all images
            # crop images by -5% to 10% of their height/width
            iaa.Crop(
                percent=(0, 0.2),
            ),
            iaa.Scale({"height": CROP_SIZE, "width": CROP_SIZE }),
        ],
        random_order=False
    )

    if img.ndim == 3:
        img = seq.augment_images(np.expand_dims(img, axis=0)).squeeze(axis=0)
    else:
        img = seq.augment_images(img)

    return img 
開發者ID:antorsae,項目名稱:landmark-recognition-challenge,代碼行數:30,代碼來源:train.py

示例14: imgaug

# 需要導入模塊: from imgaug import augmenters [as 別名]
# 或者: from imgaug.augmenters import Sometimes [as 別名]
def imgaug(args):
    # Number of batches and batch size for this example
    filename, root, fold_A = args
    img = cv2.imread(os.path.join(root,filename))
    print('image opened ' + os.path.join(root,filename))
    batch_size = 4
    for i in range(0,batch_size):
        imageio.imwrite(os.path.join(root, os.path.splitext(filename)[0] + '_' + str(i) + '.jpg'), img) #convert the current image in B into a jpg from png
    nb_batches = 1

    # Example augmentation sequence to run in the background
    sometimes = lambda aug: iaa.Sometimes(0.4, aug)
    augseq = iaa.Sequential(
            [
                iaa.PiecewiseAffine(scale=(0.01, 0.01005))
            ]
        )

    # Make batches out of the example image (here: 10 batches, each 32 times
    # the example image)
    batches = []
    for _ in range(nb_batches):
        batches.append(Batch(images=[img] * batch_size))

    #Save images
    for batch in augseq.augment_batches(batches, background=False):
        count = 0
        for img in batch.images_aug:
            path = os.path.join(fold_A,root.rsplit('/', 1)[-1], os.path.splitext(filename)[0] + '_' + str(count) + '.jpg')
            cv2.imwrite(path, img)
            print('image saved as: ' + path)
            count +=1 
開發者ID:thomasjhuang,項目名稱:deep-learning-for-document-dewarping,代碼行數:34,代碼來源:preprocess.py

示例15: aug_on_fly

# 需要導入模塊: from imgaug import augmenters [as 別名]
# 或者: from imgaug.augmenters import Sometimes [as 別名]
def aug_on_fly(img, det_mask, cls_mask):
    """Do augmentation with different combination on each training batch
    """
    def image_basic_augmentation(image, masks, ratio_operations=0.9):
        # without additional operations
        # according to the paper, operations such as shearing, fliping horizontal/vertical,
        # rotating, zooming and channel shifting will be apply
        sometimes = lambda aug: iaa.Sometimes(ratio_operations, aug)
        hor_flip_angle = np.random.uniform(0, 1)
        ver_flip_angle = np.random.uniform(0, 1)
        seq = iaa.Sequential([
            sometimes(
                iaa.SomeOf((0, 5), [
                iaa.Fliplr(hor_flip_angle),
                iaa.Flipud(ver_flip_angle),
                iaa.Affine(shear=(-16, 16)),
                iaa.Affine(scale={'x': (1, 1.6), 'y': (1, 1.6)}),
                iaa.PerspectiveTransform(scale=(0.01, 0.1))
            ]))
        ])
        det_mask, cls_mask = masks[0], masks[1]
        seq_to_deterministic = seq.to_deterministic()
        aug_img = seq_to_deterministic.augment_images(image)
        aug_det_mask = seq_to_deterministic.augment_images(det_mask)
        aug_cls_mask = seq_to_deterministic.augment_images(cls_mask)
        return aug_img, aug_det_mask, aug_cls_mask

    aug_image, aug_det_mask, aug_cls_mask = image_basic_augmentation(image=img, masks=[det_mask, cls_mask])
    return aug_image, aug_det_mask, aug_cls_mask 
開發者ID:zhuyiche,項目名稱:sfcn-opi,代碼行數:31,代碼來源:util.py


注:本文中的imgaug.augmenters.Sometimes方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。