當前位置: 首頁>>代碼示例>>Python>>正文


Python augmenters.SomeOf方法代碼示例

本文整理匯總了Python中imgaug.augmenters.SomeOf方法的典型用法代碼示例。如果您正苦於以下問題:Python augmenters.SomeOf方法的具體用法?Python augmenters.SomeOf怎麽用?Python augmenters.SomeOf使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在imgaug.augmenters的用法示例。


在下文中一共展示了augmenters.SomeOf方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: from imgaug import augmenters [as 別名]
# 或者: from imgaug.augmenters import SomeOf [as 別名]
def __init__(self, dataset_path,scale,k_fold_test=1, mode='train'):
        super().__init__()
        self.mode = mode
        self.img_path=dataset_path+'/img'
        self.mask_path=dataset_path+'/mask'
        self.image_lists,self.label_lists=self.read_list(self.img_path,k_fold_test=k_fold_test)
        self.flip =iaa.SomeOf((2,4),[
             iaa.Fliplr(0.5),
             iaa.Flipud(0.5),
             iaa.Affine(rotate=(-30, 30)),
             iaa.AdditiveGaussianNoise(scale=(0.0,0.08*255))], random_order=True)
        # resize
        self.resize_label = transforms.Resize(scale, Image.NEAREST)
        self.resize_img = transforms.Resize(scale, Image.BILINEAR)
        # normalization
        self.to_tensor = transforms.ToTensor() 
開發者ID:FENGShuanglang,項目名稱:Pytorch_Medical_Segmention_Template,代碼行數:18,代碼來源:Linear_lesion.py

示例2: __init__

# 需要導入模塊: from imgaug import augmenters [as 別名]
# 或者: from imgaug.augmenters import SomeOf [as 別名]
def __init__(self, augmentation_rate):
        self.augs = iaa.Sometimes(
            augmentation_rate,
            iaa.SomeOf(
                (4, 7),
                [
                    iaa.Affine(rotate=(-10, 10)),
                    iaa.Fliplr(0.2),
                    iaa.AverageBlur(k=(2, 10)),
                    iaa.Add((-10, 10), per_channel=0.5),
                    iaa.Multiply((0.75, 1.25), per_channel=0.5),
                    iaa.ContrastNormalization((0.5, 2.0), per_channel=0.5),
                    iaa.Crop(px=(0, 20))
                ],
                random_order=True
            )
        ) 
開發者ID:Giphy,項目名稱:celeb-detection-oss,代碼行數:19,代碼來源:img_augmentor.py

示例3: create_augmenter

# 需要導入模塊: from imgaug import augmenters [as 別名]
# 或者: from imgaug.augmenters import SomeOf [as 別名]
def create_augmenter(stage: str = "train"):
        if stage == "train":
            return iaa.Sequential([
                iaa.Fliplr(0.5),
                iaa.CropAndPad(px=(0, 112), sample_independently=False),
                iaa.Affine(translate_percent={"x": (-0.4, 0.4), "y": (-0.4, 0.4)}),
                iaa.SomeOf((0, 3), [
                    iaa.AddToHueAndSaturation((-10, 10)),
                    iaa.Affine(scale={"x": (0.9, 1.1), "y": (0.9, 1.1)}),
                    iaa.GaussianBlur(sigma=(0, 1.0)),
                    iaa.AdditiveGaussianNoise(scale=0.05 * 255)
                ])
            ])
        elif stage == "val":
            return iaa.Sequential([
                iaa.CropAndPad(px=(0, 112), sample_independently=False),
                iaa.Affine(translate_percent={"x": (-0.4, 0.4), "y": (-0.4, 0.4)}),
            ])
        elif stage == "test":
            return iaa.Sequential([]) 
開發者ID:csvance,項目名稱:keras-mobile-detectnet,代碼行數:22,代碼來源:generator.py

示例4: init_augmentations

# 需要導入模塊: from imgaug import augmenters [as 別名]
# 或者: from imgaug.augmenters import SomeOf [as 別名]
def init_augmentations(self):
        if self.transform_probability > 0 and self.use_imgaug:
            augmentations = iaa.Sometimes(
                self.transform_probability,
                iaa.Sequential([
                    iaa.SomeOf(
                        (1, None),
                        [
                            iaa.AddToHueAndSaturation(iap.Uniform(-20, 20), per_channel=True),
                            iaa.GaussianBlur(sigma=(0, 1.0)),
                            iaa.LinearContrast((0.75, 1.0)),
                            iaa.PiecewiseAffine(scale=(0.01, 0.02), mode='edge'),
                        ],
                        random_order=True
                    ),
                    iaa.Resize(
                        {"height": (16, self.image_size.height), "width": "keep-aspect-ratio"},
                        interpolation=imgaug.ALL
                    ),
                ])
            )
        else:
            augmentations = None
        return augmentations 
開發者ID:Bartzi,項目名稱:kiss,代碼行數:26,代碼來源:image_dataset.py

示例5: amaugimg

# 需要導入模塊: from imgaug import augmenters [as 別名]
# 或者: from imgaug.augmenters import SomeOf [as 別名]
def amaugimg(image):
    #數據增強
    image = cv2.cvtColor(np.asarray(image), cv2.COLOR_RGB2BGR)

    seq = iaa.Sequential([
        # iaa.Affine(rotate=(-5, 5),
        #            shear=(-5, 5),
        #            mode='edge'),

        iaa.SomeOf((0, 2),                        #選擇數據增強
                   [
                       iaa.GaussianBlur((0, 1.5)),
                       iaa.AdditiveGaussianNoise(loc=0, scale=(0.0, 0.01 * 255), per_channel=0.5),
                       # iaa.AddToHueAndSaturation((-5, 5)),  # change hue and saturation
                       iaa.PiecewiseAffine(scale=(0.01, 0.03)),
                       iaa.PerspectiveTransform(scale=(0.01, 0.1))
                   ],
                   random_order=True
                   )
    ])
    image = seq.augment_image(image)

    image = Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
    return image 
開發者ID:LcenArthas,項目名稱:CVWC2019-Amur-Tiger-Re-ID,代碼行數:26,代碼來源:dataset_loader.py

示例6: augment

# 需要導入模塊: from imgaug import augmenters [as 別名]
# 或者: from imgaug.augmenters import SomeOf [as 別名]
def augment(batch, kinds, random_state):
    ''' perform data augmetation on the image data in batch.
    '''
    if len(batch['input'].shape) != 4:
        return batch
    assert len(batch['input'].shape) == 4
    batch_aug = {}
    batch_aug.update(batch)
    seq = iaa.SomeOf(
        (0, None),
        [augmentations[kind] for kind in kinds],
        random_order=True,
        random_state=random_state,
    )
    batch_aug['input'] = seq.augment_images(batch_aug['input'])
    return batch_aug 
開發者ID:namhoonlee,項目名稱:snip-public,代碼行數:18,代碼來源:augment.py

示例7: main

# 需要導入模塊: from imgaug import augmenters [as 別名]
# 或者: from imgaug.augmenters import SomeOf [as 別名]
def main():
    nb_checked = 0

    augs = iaa.SomeOf((1, None), [
        iaa.Resize({"height": (1, 100), "width": (1, 100)}),
        iaa.Affine(
            scale=(0.01, 2.0),
            rotate=(-360, 360),
            shear=(-360, 360),
            translate_px={"x": (-50, 50), "y": (-50, 50)}
        ),
        iaa.PerspectiveTransform((0.01, 0.2))
    ])

    height, width = 100, 200

    while True:
        poly = create_random_polygon(height, width, nb_checked)
        psoi = PolygonsOnImage([poly], shape=(height, width, 3))
        psoi_aug = augs.augment_polygons(psoi)

        if not poly.is_valid or not psoi_aug.polygons[0].is_valid:
            print("poly:     ", poly, poly.is_valid)
            print("poly_aug: ", psoi_aug.polygons[0], psoi_aug.polygons[0].is_valid)

        assert poly.is_valid
        assert psoi_aug.polygons[0].is_valid

        nb_checked += 1
        if nb_checked % 100 == 0:
            print("Checked %d..." % (nb_checked,))
        if nb_checked > 100000:
            break 
開發者ID:aleju,項目名稱:imgaug,代碼行數:35,代碼來源:check_polygons_stay_valid_during_augmentation.py

示例8: aug_on_fly

# 需要導入模塊: from imgaug import augmenters [as 別名]
# 或者: from imgaug.augmenters import SomeOf [as 別名]
def aug_on_fly(img, det_mask, cls_mask):
    """Do augmentation with different combination on each training batch
    """
    def image_basic_augmentation(image, masks, ratio_operations=0.9):
        # without additional operations
        # according to the paper, operations such as shearing, fliping horizontal/vertical,
        # rotating, zooming and channel shifting will be apply
        sometimes = lambda aug: iaa.Sometimes(ratio_operations, aug)
        hor_flip_angle = np.random.uniform(0, 1)
        ver_flip_angle = np.random.uniform(0, 1)
        seq = iaa.Sequential([
            sometimes(
                iaa.SomeOf((0, 5), [
                iaa.Fliplr(hor_flip_angle),
                iaa.Flipud(ver_flip_angle),
                iaa.Affine(shear=(-16, 16)),
                iaa.Affine(scale={'x': (1, 1.6), 'y': (1, 1.6)}),
                iaa.PerspectiveTransform(scale=(0.01, 0.1))
            ]))
        ])
        det_mask, cls_mask = masks[0], masks[1]
        seq_to_deterministic = seq.to_deterministic()
        aug_img = seq_to_deterministic.augment_images(image)
        aug_det_mask = seq_to_deterministic.augment_images(det_mask)
        aug_cls_mask = seq_to_deterministic.augment_images(cls_mask)
        return aug_img, aug_det_mask, aug_cls_mask

    aug_image, aug_det_mask, aug_cls_mask = image_basic_augmentation(image=img, masks=[det_mask, cls_mask])
    return aug_image, aug_det_mask, aug_cls_mask 
開發者ID:zhuyiche,項目名稱:sfcn-opi,代碼行數:31,代碼來源:util.py

示例9: chapter_augmenters_someof

# 需要導入模塊: from imgaug import augmenters [as 別名]
# 或者: from imgaug.augmenters import SomeOf [as 別名]
def chapter_augmenters_someof():
    aug = iaa.SomeOf(2, [
        iaa.Affine(rotate=45),
        iaa.AdditiveGaussianNoise(scale=0.2*255),
        iaa.Add(50, per_channel=True),
        iaa.Sharpen(alpha=0.5)
    ])
    run_and_save_augseq(
        "someof.jpg", aug,
        [ia.quokka(size=(128, 128)) for _ in range(8)], cols=4, rows=2
    )

    aug = iaa.SomeOf((0, None), [
        iaa.Affine(rotate=45),
        iaa.AdditiveGaussianNoise(scale=0.2*255),
        iaa.Add(50, per_channel=True),
        iaa.Sharpen(alpha=0.5)
    ])
    run_and_save_augseq(
        "someof_0_to_none.jpg", aug,
        [ia.quokka(size=(128, 128)) for _ in range(8)], cols=4, rows=2
    )

    aug = iaa.SomeOf(2, [
        iaa.Affine(rotate=45),
        iaa.AdditiveGaussianNoise(scale=0.2*255),
        iaa.Add(50, per_channel=True),
        iaa.Sharpen(alpha=0.5)
    ], random_order=True)
    run_and_save_augseq(
        "someof_random_order.jpg", aug,
        [ia.quokka(size=(128, 128)) for _ in range(8)], cols=4, rows=2
    ) 
開發者ID:JoshuaPiinRueyPan,項目名稱:ViolenceDetection,代碼行數:35,代碼來源:generate_documentation_images.py

示例10: train

# 需要導入模塊: from imgaug import augmenters [as 別名]
# 或者: from imgaug.augmenters import SomeOf [as 別名]
def train(model, dataset_dir, subset):
    """Train the model."""
    # Training dataset.
    dataset_train = NucleusDataset()
    dataset_train.load_nucleus(dataset_dir, subset)
    dataset_train.prepare()

    # Validation dataset
    dataset_val = NucleusDataset()
    dataset_val.load_nucleus(dataset_dir, "val")
    dataset_val.prepare()

    # Image augmentation
    # http://imgaug.readthedocs.io/en/latest/source/augmenters.html
    augmentation = iaa.SomeOf((0, 2), [
        iaa.Fliplr(0.5),
        iaa.Flipud(0.5),
        iaa.OneOf([iaa.Affine(rotate=90),
                   iaa.Affine(rotate=180),
                   iaa.Affine(rotate=270)]),
        iaa.Multiply((0.8, 1.5)),
        iaa.GaussianBlur(sigma=(0.0, 5.0))
    ])

    # *** This training schedule is an example. Update to your needs ***

    # If starting from imagenet, train heads only for a bit
    # since they have random weights
    print("Train network heads")
    model.train(dataset_train, dataset_val,
                learning_rate=config.LEARNING_RATE,
                epochs=20,
                augmentation=augmentation,
                layers='heads')

    print("Train all layers")
    model.train(dataset_train, dataset_val,
                learning_rate=config.LEARNING_RATE,
                epochs=40,
                augmentation=augmentation,
                layers='all')


############################################################
#  RLE Encoding
############################################################ 
開發者ID:dmechea,項目名稱:PanopticSegmentation,代碼行數:48,代碼來源:nucleus.py

示例11: _create_augment_pipeline

# 需要導入模塊: from imgaug import augmenters [as 別名]
# 或者: from imgaug.augmenters import SomeOf [as 別名]
def _create_augment_pipeline():
    from imgaug import augmenters as iaa
    
    ### augmentors by https://github.com/aleju/imgaug
    sometimes = lambda aug: iaa.Sometimes(0.5, aug)

    # Define our sequence of augmentation steps that will be applied to every image
    # All augmenters with per_channel=0.5 will sample one value _per image_
    # in 50% of all cases. In all other cases they will sample new values
    # _per channel_.
    aug_pipe = iaa.Sequential(
        [
            # apply the following augmenters to most images
            #iaa.Fliplr(0.5), # horizontally flip 50% of all images
            #iaa.Flipud(0.2), # vertically flip 20% of all images
            #sometimes(iaa.Crop(percent=(0, 0.1))), # crop images by 0-10% of their height/width
            sometimes(iaa.Affine(
                #scale={"x": (0.8, 1.2), "y": (0.8, 1.2)}, # scale images to 80-120% of their size, individually per axis
                #translate_percent={"x": (-0.2, 0.2), "y": (-0.2, 0.2)}, # translate by -20 to +20 percent (per axis)
                #rotate=(-5, 5), # rotate by -45 to +45 degrees
                #shear=(-5, 5), # shear by -16 to +16 degrees
                #order=[0, 1], # use nearest neighbour or bilinear interpolation (fast)
                #cval=(0, 255), # if mode is constant, use a cval between 0 and 255
                #mode=ia.ALL # use any of scikit-image's warping modes (see 2nd image from the top for examples)
            )),
            # execute 0 to 5 of the following (less important) augmenters per image
            # don't execute all of them, as that would often be way too strong
            iaa.SomeOf((0, 5),
                [
                    #sometimes(iaa.Superpixels(p_replace=(0, 1.0), n_segments=(20, 200))), # convert images into their superpixel representation
                    iaa.OneOf([
                        iaa.GaussianBlur((0, 3.0)), # blur images with a sigma between 0 and 3.0
                        iaa.AverageBlur(k=(2, 7)), # blur image using local means with kernel sizes between 2 and 7
                        iaa.MedianBlur(k=(3, 11)), # blur image using local medians with kernel sizes between 2 and 7
                    ]),
                    iaa.Sharpen(alpha=(0, 1.0), lightness=(0.75, 1.5)), # sharpen images
                    #iaa.Emboss(alpha=(0, 1.0), strength=(0, 2.0)), # emboss images
                    # search either for all edges or for directed edges
                    #sometimes(iaa.OneOf([
                    #    iaa.EdgeDetect(alpha=(0, 0.7)),
                    #    iaa.DirectedEdgeDetect(alpha=(0, 0.7), direction=(0.0, 1.0)),
                    #])),
                    iaa.AdditiveGaussianNoise(loc=0, scale=(0.0, 0.05*255), per_channel=0.5), # add gaussian noise to images
                    iaa.OneOf([
                        iaa.Dropout((0.01, 0.1), per_channel=0.5), # randomly remove up to 10% of the pixels
                        #iaa.CoarseDropout((0.03, 0.15), size_percent=(0.02, 0.05), per_channel=0.2),
                    ]),
                    #iaa.Invert(0.05, per_channel=True), # invert color channels
                    iaa.Add((-10, 10), per_channel=0.5), # change brightness of images (by -10 to 10 of original value)
                    iaa.Multiply((0.5, 1.5), per_channel=0.5), # change brightness of images (50-150% of original value)
                    iaa.ContrastNormalization((0.5, 2.0), per_channel=0.5), # improve or worsen the contrast
                    #iaa.Grayscale(alpha=(0.0, 1.0)),
                    #sometimes(iaa.ElasticTransformation(alpha=(0.5, 3.5), sigma=0.25)), # move pixels locally around (with random strengths)
                    #sometimes(iaa.PiecewiseAffine(scale=(0.01, 0.05))) # sometimes move parts of the image around
                ],
                random_order=True
            )
        ],
        random_order=True
    )
    return aug_pipe 
開發者ID:penny4860,項目名稱:tf2-eager-yolo3,代碼行數:63,代碼來源:augment.py

示例12: heavy_aug_on_fly

# 需要導入模塊: from imgaug import augmenters [as 別名]
# 或者: from imgaug.augmenters import SomeOf [as 別名]
def heavy_aug_on_fly(img, det_mask):
    """Do augmentation with different combination on each training batch
    """

    def image_heavy_augmentation(image, det_masks, ratio_operations=0.6):
        # according to the paper, operations such as shearing, fliping horizontal/vertical,
        # rotating, zooming and channel shifting will be apply
        sometimes = lambda aug: iaa.Sometimes(ratio_operations, aug)
        edge_detect_sometime = lambda aug: iaa.Sometimes(0.1, aug)
        elasitic_sometime = lambda aug:iaa.Sometimes(0.2, aug)
        add_gauss_noise = lambda aug: iaa.Sometimes(0.15, aug)
        hor_flip_angle = np.random.uniform(0, 1)
        ver_flip_angle = np.random.uniform(0, 1)
        seq = iaa.Sequential([
            iaa.SomeOf((0, 5), [
                iaa.Fliplr(hor_flip_angle),
                iaa.Flipud(ver_flip_angle),
                iaa.Affine(shear=(-16, 16)),
                iaa.Affine(scale={'x': (1, 1.6), 'y': (1, 1.6)}),
                iaa.PerspectiveTransform(scale=(0.01, 0.1)),

                # These are additional augmentation.
                #iaa.ContrastNormalization((0.75, 1.5))

            ]),

            edge_detect_sometime(iaa.OneOf([
                iaa.EdgeDetect(alpha=(0, 0.7)),
                iaa.DirectedEdgeDetect(alpha=(0,0.7), direction=(0.0, 1.0)
                                       )
            ])),
            add_gauss_noise(iaa.AdditiveGaussianNoise(loc=0,
                                                      scale=(0.0, 0.05*255),
                                                      per_channel=0.5)
                            ),
            iaa.Sometimes(0.3,
                          iaa.GaussianBlur(sigma=(0, 0.5))
                          ),
            elasitic_sometime(
                iaa.ElasticTransformation(alpha=(0.5, 3.5), sigma=0.25))
        ])

        seq_to_deterministic = seq.to_deterministic()
        aug_img = seq_to_deterministic.augment_images(image)
        aug_det_mask = seq_to_deterministic.augment_images(det_masks)
        return aug_img, aug_det_mask

    aug_image, aug_det_mask = image_heavy_augmentation(image=img, det_masks=det_mask)
    return aug_image, aug_det_mask 
開發者ID:zhuyiche,項目名稱:sfcn-opi,代碼行數:51,代碼來源:util.py

示例13: get_augmentations

# 需要導入模塊: from imgaug import augmenters [as 別名]
# 或者: from imgaug.augmenters import SomeOf [as 別名]
def get_augmentations():
    # applies the given augmenter in 50% of all cases,
    sometimes = lambda aug: iaa.Sometimes(0.5, aug)

    # Define our sequence of augmentation steps that will be applied to every image
    seq = iaa.Sequential([
            # execute 0 to 5 of the following (less important) augmenters per image
            iaa.SomeOf((0, 5),
                [
                    iaa.OneOf([
                        iaa.GaussianBlur((0, 3.0)),
                        iaa.AverageBlur(k=(2, 7)), 
                        iaa.MedianBlur(k=(3, 11)),
                    ]),
                    iaa.Sharpen(alpha=(0, 1.0), lightness=(0.75, 1.5)),
                    iaa.Emboss(alpha=(0, 1.0), strength=(0, 2.0)), 
                    # search either for all edges or for directed edges,
                    # blend the result with the original image using a blobby mask
                    iaa.SimplexNoiseAlpha(iaa.OneOf([
                        iaa.EdgeDetect(alpha=(0.5, 1.0)),
                        iaa.DirectedEdgeDetect(alpha=(0.5, 1.0), direction=(0.0, 1.0)),
                    ])),
                    iaa.AdditiveGaussianNoise(loc=0, scale=(0.0, 0.05*255), per_channel=0.5),
                    iaa.OneOf([
                        iaa.Dropout((0.01, 0.1), per_channel=0.5), # randomly remove up to 10% of the pixels
                        iaa.CoarseDropout((0.03, 0.15), size_percent=(0.02, 0.05), per_channel=0.2),
                    ]),
                    iaa.Add((-10, 10), per_channel=0.5), # change brightness of images (by -10 to 10 of original value)
                    iaa.AddToHueAndSaturation((-20, 20)), # change hue and saturation
                    # either change the brightness of the whole image (sometimes
                    # per channel) or change the brightness of subareas
                    iaa.OneOf([
                        iaa.Multiply((0.5, 1.5), per_channel=0.5),
                        iaa.FrequencyNoiseAlpha(
                            exponent=(-4, 0),
                            first=iaa.Multiply((0.5, 1.5), per_channel=True),
                            second=iaa.ContrastNormalization((0.5, 2.0))
                        )
                    ]),
                    iaa.ContrastNormalization((0.5, 2.0), per_channel=0.5), # improve or worsen the contrast
                    sometimes(iaa.ElasticTransformation(alpha=(0.5, 3.5), sigma=0.25)), # move pixels locally around (with random strengths)
                ],
                random_order=True
            )
        ],
        random_order=True
    )
    return seq

### data transforms 
開發者ID:xl-sr,項目名稱:CAL,代碼行數:52,代碼來源:dataloader.py

示例14: train

# 需要導入模塊: from imgaug import augmenters [as 別名]
# 或者: from imgaug.augmenters import SomeOf [as 別名]
def train(model):
    """Train the model."""
    # Training dataset.
    
    augmentation = iaa.SomeOf((0, 2), [
        iaa.Fliplr(0.5),
        iaa.Multiply((0.6, 1.1)),
        iaa.GaussianBlur(sigma=(0.0, 0.5))
    ])
    
    dataset_train = AdrivingDatasetNoResize()
    dataset_train.load_adriving(data_dir, "train", size = IMGSIZE)
    # dataset_train.load_adriving(data_dir, "train")
    dataset_train.prepare()
    print(len(dataset_train.image_ids))

    # Validation dataset
    dataset_val = AdrivingDatasetNoResize()
    dataset_val.load_adriving(data_dir, "val", size = IMGSIZE)
    #dataset_val.load_adriving(data_dir, "val")
    dataset_val.prepare()
    # *** This training schedule is an example. Update to your needs ***
    # Since we're using a very small dataset, and starting from
    # COCO trained weights, we don't need to train too long. Also,
    # no need to train all layers, just the heads should do it.
    print("Training network heads")
#     model.train_model(dataset_train, dataset_val,
#                 learning_rate=config.LEARNING_RATE/10,
#                 epochs=10,
#                 layers='heads')
    
    model.train_model(dataset_train, dataset_val,
                learning_rate=config.LEARNING_RATE, augmentation= augmentation,
                epochs=200,layers='heads')
    model.train_model(dataset_train, dataset_val,
                learning_rate=config.LEARNING_RATE/10, augmentation= augmentation,
                epochs=200,layers='4+')
# --------------------------------------------------------------------------

############################################################
#  Training
############################################################ 
開發者ID:wwoody827,項目名稱:cvpr-2018-autonomous-driving-autopilot-solution,代碼行數:44,代碼來源:train_resnet_v2.py

示例15: train

# 需要導入模塊: from imgaug import augmenters [as 別名]
# 或者: from imgaug.augmenters import SomeOf [as 別名]
def train(model):
    """Train the model."""
    # Training dataset.
    
    augmentation = iaa.SomeOf((0, 2), [
        iaa.Fliplr(0.5),
        iaa.Multiply((0.6, 1.1)),
        iaa.GaussianBlur(sigma=(0.0, 0.5))
    ])
    
    dataset_train = AdrivingDatasetNoResize()
    dataset_train.load_adriving(data_dir, "train", size = IMGSIZE)

    dataset_train.prepare()
    print(len(dataset_train.image_ids))

    # Validation dataset
    dataset_val = AdrivingDatasetNoResize()
    dataset_val.load_adriving(data_dir, "val", size = IMGSIZE)

    dataset_val.prepare()
    # *** This training schedule is an example. Update to your needs ***
    # Since we're using a very small dataset, and starting from
    # COCO trained weights, we don't need to train too long. Also,
    # no need to train all layers, just the heads should do it.
    
    print("Training network heads")
    model.train_model(dataset_train,
                      dataset_val,
                      learning_rate=config.LEARNING_RATE, 
                      augmentation= augmentation,
                      epochs=100,layers='heads')
    
    model.train_model(dataset_train,
                      dataset_val,
                      learning_rate=config.LEARNING_RATE, 
                      augmentation= augmentation,
                      epochs=100,layers='4+')
# --------------------------------------------------------------------------

############################################################
#  Training
############################################################ 
開發者ID:wwoody827,項目名稱:cvpr-2018-autonomous-driving-autopilot-solution,代碼行數:45,代碼來源:train_resnet.py


注:本文中的imgaug.augmenters.SomeOf方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。