本文整理匯總了Python中imgaug.augmenters.Scale方法的典型用法代碼示例。如果您正苦於以下問題:Python augmenters.Scale方法的具體用法?Python augmenters.Scale怎麽用?Python augmenters.Scale使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類imgaug.augmenters
的用法示例。
在下文中一共展示了augmenters.Scale方法的7個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: chapter_augmenters_scale
# 需要導入模塊: from imgaug import augmenters [as 別名]
# 或者: from imgaug.augmenters import Scale [as 別名]
def chapter_augmenters_scale():
aug = iaa.Scale({"height": 32, "width": 64})
run_and_save_augseq(
"scale_32x64.jpg", aug,
[ia.quokka(size=(128, 128)) for _ in range(8)], cols=4, rows=2
)
aug = iaa.Scale({"height": 32, "width": "keep-aspect-ratio"})
run_and_save_augseq(
"scale_32xkar.jpg", aug,
[ia.quokka(size=(128, 128)) for _ in range(8)], cols=4, rows=2
)
aug = iaa.Scale((0.5, 1.0))
run_and_save_augseq(
"scale_50_to_100_percent.jpg", aug,
[ia.quokka(size=(128, 128)) for _ in range(8)], cols=4, rows=2
)
aug = iaa.Scale({"height": (0.5, 0.75), "width": [16, 32, 64]})
run_and_save_augseq(
"scale_h_uniform_w_choice.jpg", aug,
[ia.quokka(size=(128, 128)) for _ in range(8)], cols=4, rows=2
)
示例2: resize_seq
# 需要導入模塊: from imgaug import augmenters [as 別名]
# 或者: from imgaug.augmenters import Scale [as 別名]
def resize_seq(resize_target_size):
seq = iaa.Sequential([
affine_seq,
iaa.Scale({'height': resize_target_size, 'width': resize_target_size}),
], random_order=False)
return seq
示例3: resize_pad_seq
# 需要導入模塊: from imgaug import augmenters [as 別名]
# 或者: from imgaug.augmenters import Scale [as 別名]
def resize_pad_seq(resize_target_size, pad_method, pad_size):
seq = iaa.Sequential([
affine_seq,
iaa.Scale({'height': resize_target_size, 'width': resize_target_size}),
PadFixed(pad=(pad_size, pad_size), pad_method=pad_method),
], random_order=False)
return seq
示例4: resize_to_fit_net
# 需要導入模塊: from imgaug import augmenters [as 別名]
# 或者: from imgaug.augmenters import Scale [as 別名]
def resize_to_fit_net(resize_target_size):
seq = iaa.Sequential(iaa.Scale({'height': resize_target_size, 'width': resize_target_size}))
return seq
示例5: augment_soft
# 需要導入模塊: from imgaug import augmenters [as 別名]
# 或者: from imgaug.augmenters import Scale [as 別名]
def augment_soft(img):
# Sometimes(0.5, ...) applies the given augmenter in 50% of all cases,
# e.g. Sometimes(0.5, GaussianBlur(0.3)) would blur roughly every second image.
sometimes = lambda aug: iaa.Sometimes(0.5, aug)
# Define our sequence of augmentation steps that will be applied to every image
# All augmenters with per_channel=0.5 will sample one value _per image_
# in 50% of all cases. In all other cases they will sample new values
# _per channel_.
seq = iaa.Sequential(
[
# apply the following augmenters to most images
iaa.Fliplr(0.5), # horizontally flip 50% of all images
# crop images by -5% to 10% of their height/width
iaa.Crop(
percent=(0, 0.2),
),
iaa.Scale({"height": CROP_SIZE, "width": CROP_SIZE }),
],
random_order=False
)
if img.ndim == 3:
img = seq.augment_images(np.expand_dims(img, axis=0)).squeeze(axis=0)
else:
img = seq.augment_images(img)
return img
示例6: __init__
# 需要導入模塊: from imgaug import augmenters [as 別名]
# 或者: from imgaug.augmenters import Scale [as 別名]
def __init__(self):
self.augmentor_pipeline = Pipeline()
self.augmentor_pipeline.add_operation(Operations.Crop(probability=1, width=64, height=64, centre=False))
self.augmentor_pipeline.add_operation(
Operations.Resize(probability=1, width=512, height=512, resample_filter="BILINEAR")
)
self.imgaug_transform = iaa.Sequential(
[iaa.CropToFixedSize(width=64, height=64), iaa.Scale(size=512, interpolation="linear")]
)
self.solt_stream = slc.Stream(
[slt.CropTransform(crop_size=(64, 64), crop_mode="r"), slt.ResizeTransform(resize_to=(512, 512))]
)
示例7: chapter_examples_basics_simple
# 需要導入模塊: from imgaug import augmenters [as 別名]
# 或者: from imgaug.augmenters import Scale [as 別名]
def chapter_examples_basics_simple():
import imgaug as ia
from imgaug import augmenters as iaa
# Example batch of images.
# The array has shape (32, 64, 64, 3) and dtype uint8.
images = np.array(
[ia.quokka(size=(64, 64)) for _ in range(32)],
dtype=np.uint8
)
seq = iaa.Sequential([
iaa.Fliplr(0.5), # horizontal flips
iaa.Crop(percent=(0, 0.1)), # random crops
# Small gaussian blur with random sigma between 0 and 0.5.
# But we only blur about 50% of all images.
iaa.Sometimes(0.5,
iaa.GaussianBlur(sigma=(0, 0.5))
),
# Strengthen or weaken the contrast in each image.
iaa.ContrastNormalization((0.75, 1.5)),
# Add gaussian noise.
# For 50% of all images, we sample the noise once per pixel.
# For the other 50% of all images, we sample the noise per pixel AND
# channel. This can change the color (not only brightness) of the
# pixels.
iaa.AdditiveGaussianNoise(loc=0, scale=(0.0, 0.05*255), per_channel=0.5),
# Make some images brighter and some darker.
# In 20% of all cases, we sample the multiplier once per channel,
# which can end up changing the color of the images.
iaa.Multiply((0.8, 1.2), per_channel=0.2),
# Apply affine transformations to each image.
# Scale/zoom them, translate/move them, rotate them and shear them.
iaa.Affine(
scale={"x": (0.8, 1.2), "y": (0.8, 1.2)},
translate_percent={"x": (-0.2, 0.2), "y": (-0.2, 0.2)},
rotate=(-25, 25),
shear=(-8, 8)
)
], random_order=True) # apply augmenters in random order
ia.seed(1)
images_aug = seq.augment_images(images)
# ------------
save(
"examples_basics",
"simple.jpg",
grid(images_aug, cols=8, rows=4)
)