當前位置: 首頁>>代碼示例>>Python>>正文


Python augmenters.MedianBlur方法代碼示例

本文整理匯總了Python中imgaug.augmenters.MedianBlur方法的典型用法代碼示例。如果您正苦於以下問題:Python augmenters.MedianBlur方法的具體用法?Python augmenters.MedianBlur怎麽用?Python augmenters.MedianBlur使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在imgaug.augmenters的用法示例。


在下文中一共展示了augmenters.MedianBlur方法的14個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_zero_sized_axes

# 需要導入模塊: from imgaug import augmenters [as 別名]
# 或者: from imgaug.augmenters import MedianBlur [as 別名]
def test_zero_sized_axes(self):
        shapes = [
            (0, 0),
            (0, 1),
            (1, 0),
            (0, 1, 0),
            (1, 0, 0),
            (0, 1, 1),
            (1, 0, 1)
        ]

        for shape in shapes:
            with self.subTest(shape=shape):
                image = np.zeros(shape, dtype=np.uint8)

                image_aug = iaa.MedianBlur(k=3)(image=image)

                assert image_aug.shape == image.shape 
開發者ID:aleju,項目名稱:imgaug,代碼行數:20,代碼來源:test_blur.py

示例2: __init__

# 需要導入模塊: from imgaug import augmenters [as 別名]
# 或者: from imgaug.augmenters import MedianBlur [as 別名]
def __init__(self):
        self.seq = iaa.Sequential([
            iaa.Sometimes(0.5, iaa.OneOf([
                iaa.GaussianBlur((0, 3.0)),  # blur images with a sigma between 0 and 3.0
                iaa.AverageBlur(k=(2, 7)),  # blur image using local means with kernel sizes between 2 and 7
                iaa.MedianBlur(k=(3, 11)),  # blur image using local medians with kernel sizes between 2 and 7
            ])),
            iaa.Sometimes(0.5, iaa.AdditiveGaussianNoise(loc=0, scale=(0.0, 0.05 * 255), per_channel=0.5)),
            iaa.Sometimes(0.5, iaa.Add((-10, 10), per_channel=0.5)),
            iaa.Sometimes(0.5, iaa.AddToHueAndSaturation((-20, 20))),
            iaa.Sometimes(0.5, iaa.FrequencyNoiseAlpha(
                exponent=(-4, 0),
                first=iaa.Multiply((0.5, 1.5), per_channel=True),
                second=iaa.LinearContrast((0.5, 2.0))
            )),
            iaa.Sometimes(0.5, iaa.PiecewiseAffine(scale=(0.01, 0.05))),
            iaa.Sometimes(0.5, iaa.PerspectiveTransform(scale=(0.01, 0.1)))
        ], random_order=True) 
開發者ID:WenmuZhou,項目名稱:crnn.gluon,代碼行數:20,代碼來源:augment.py

示例3: main

# 需要導入模塊: from imgaug import augmenters [as 別名]
# 或者: from imgaug.augmenters import MedianBlur [as 別名]
def main():
    image = data.astronaut()
    image = ia.imresize_single_image(image, (64, 64))
    print("image shape:", image.shape)
    print("Press any key or wait %d ms to proceed to the next image." % (TIME_PER_STEP,))

    k = [
        1,
        3,
        5,
        7,
        (3, 3),
        (1, 11)
    ]

    cv2.namedWindow("aug", cv2.WINDOW_NORMAL)
    cv2.resizeWindow("aug", 64*NB_AUGS_PER_IMAGE, 64)

    for ki in k:
        aug = iaa.MedianBlur(k=ki)
        img_aug = [aug.augment_image(image) for _ in range(NB_AUGS_PER_IMAGE)]
        img_aug = np.hstack(img_aug)
        print("dtype", img_aug.dtype, "averages", np.average(img_aug, axis=tuple(range(0, img_aug.ndim-1))))

        title = "k=%s" % (str(ki),)
        img_aug = ia.draw_text(img_aug, x=5, y=5, text=title)

        cv2.imshow("aug", img_aug[..., ::-1]) # here with rgb2bgr
        cv2.waitKey(TIME_PER_STEP) 
開發者ID:aleju,項目名稱:imgaug,代碼行數:31,代碼來源:check_median_blur.py

示例4: test_k_is_1

# 需要導入模塊: from imgaug import augmenters [as 別名]
# 或者: from imgaug.augmenters import MedianBlur [as 別名]
def test_k_is_1(self):
        # no blur, shouldnt change anything
        aug = iaa.MedianBlur(k=1)
        observed = aug.augment_image(self.base_img)
        assert np.array_equal(observed, self.base_img) 
開發者ID:aleju,項目名稱:imgaug,代碼行數:7,代碼來源:test_blur.py

示例5: test_k_is_3

# 需要導入模塊: from imgaug import augmenters [as 別名]
# 或者: from imgaug.augmenters import MedianBlur [as 別名]
def test_k_is_3(self):
        # k=3
        aug = iaa.MedianBlur(k=3)
        observed = aug.augment_image(self.base_img)
        assert np.array_equal(observed, self.blur3x3) 
開發者ID:aleju,項目名稱:imgaug,代碼行數:7,代碼來源:test_blur.py

示例6: test_k_is_5

# 需要導入模塊: from imgaug import augmenters [as 別名]
# 或者: from imgaug.augmenters import MedianBlur [as 別名]
def test_k_is_5(self):
        # k=5
        aug = iaa.MedianBlur(k=5)
        observed = aug.augment_image(self.base_img)
        assert np.array_equal(observed, self.blur5x5) 
開發者ID:aleju,項目名稱:imgaug,代碼行數:7,代碼來源:test_blur.py

示例7: test_k_is_tuple

# 需要導入模塊: from imgaug import augmenters [as 別名]
# 或者: from imgaug.augmenters import MedianBlur [as 別名]
def test_k_is_tuple(self):
        # k as (3, 5)
        aug = iaa.MedianBlur(k=(3, 5))
        seen = [False, False]
        for i in sm.xrange(100):
            observed = aug.augment_image(self.base_img)
            if np.array_equal(observed, self.blur3x3):
                seen[0] = True
            elif np.array_equal(observed, self.blur5x5):
                seen[1] = True
            else:
                raise Exception("Unexpected result in MedianBlur@1")
            if all(seen):
                break
        assert np.all(seen) 
開發者ID:aleju,項目名稱:imgaug,代碼行數:17,代碼來源:test_blur.py

示例8: test_more_than_four_channels

# 需要導入模塊: from imgaug import augmenters [as 別名]
# 或者: from imgaug.augmenters import MedianBlur [as 別名]
def test_more_than_four_channels(self):
        shapes = [
            (1, 1, 4),
            (1, 1, 5),
            (1, 1, 512),
            (1, 1, 513)
        ]
        for shape in shapes:
            with self.subTest(shape=shape):
                image = np.zeros(shape, dtype=np.uint8)

                image_aug = iaa.MedianBlur(k=3)(image=image)

                assert image_aug.shape == image.shape 
開發者ID:aleju,項目名稱:imgaug,代碼行數:16,代碼來源:test_blur.py

示例9: test_keypoints_not_changed

# 需要導入模塊: from imgaug import augmenters [as 別名]
# 或者: from imgaug.augmenters import MedianBlur [as 別名]
def test_keypoints_not_changed(self):
        kps = [ia.Keypoint(x=0, y=0), ia.Keypoint(x=1, y=1),
               ia.Keypoint(x=2, y=2)]
        kpsoi = [ia.KeypointsOnImage(kps, shape=(11, 11, 1))]

        aug = iaa.MedianBlur(k=3)
        aug_det = aug.to_deterministic()
        observed = aug.augment_keypoints(kpsoi)
        expected = kpsoi
        assert keypoints_equal(observed, expected)

        observed = aug_det.augment_keypoints(kpsoi)
        expected = kpsoi
        assert keypoints_equal(observed, expected) 
開發者ID:aleju,項目名稱:imgaug,代碼行數:16,代碼來源:test_blur.py

示例10: test_pickleable

# 需要導入模塊: from imgaug import augmenters [as 別名]
# 或者: from imgaug.augmenters import MedianBlur [as 別名]
def test_pickleable(self):
        aug = iaa.MedianBlur((1, 11), seed=1)
        runtest_pickleable_uint8_img(aug, iterations=10)


# TODO extend these tests 
開發者ID:aleju,項目名稱:imgaug,代碼行數:8,代碼來源:test_blur.py

示例11: main

# 需要導入模塊: from imgaug import augmenters [as 別名]
# 或者: from imgaug.augmenters import MedianBlur [as 別名]
def main():
    image = data.astronaut()
    image = ia.imresize_single_image(image, (64, 64))
    print("image shape:", image.shape)
    print("Press any key or wait %d ms to proceed to the next image." % (TIME_PER_STEP,))

    k = [
        1,
        3,
        5,
        7,
        (3, 3),
        (1, 11)
    ]

    cv2.namedWindow("aug", cv2.WINDOW_NORMAL)
    cv2.resizeWindow("aug", 64*NB_AUGS_PER_IMAGE, 64)
    #cv2.imshow("aug", image[..., ::-1])
    #cv2.waitKey(TIME_PER_STEP)

    for ki in k:
        aug = iaa.MedianBlur(k=ki)
        img_aug = [aug.augment_image(image) for _ in range(NB_AUGS_PER_IMAGE)]
        img_aug = np.hstack(img_aug)
        print("dtype", img_aug.dtype, "averages", np.average(img_aug, axis=tuple(range(0, img_aug.ndim-1))))
        #print("dtype", img_aug.dtype, "averages", img_aug.mean(axis=range(1, img_aug.ndim)))

        title = "k=%s" % (str(ki),)
        img_aug = ia.draw_text(img_aug, x=5, y=5, text=title)

        cv2.imshow("aug", img_aug[..., ::-1]) # here with rgb2bgr
        cv2.waitKey(TIME_PER_STEP) 
開發者ID:JoshuaPiinRueyPan,項目名稱:ViolenceDetection,代碼行數:34,代碼來源:check_median_blur.py

示例12: chapter_augmenters_medianblur

# 需要導入模塊: from imgaug import augmenters [as 別名]
# 或者: from imgaug.augmenters import MedianBlur [as 別名]
def chapter_augmenters_medianblur():
    aug = iaa.MedianBlur(k=(3, 11))
    run_and_save_augseq(
        "medianblur.jpg", aug,
        [ia.quokka(size=(128, 128)) for _ in range(16)], cols=4, rows=4,
        quality=75
    )

    # median doesnt support this
    #aug = iaa.MedianBlur(k=((5, 11), (1, 3)))
    #run_and_save_augseq(
    #    "medianblur_mixed.jpg", aug,
    #    [ia.quokka(size=(64, 64)) for _ in range(16)], cols=8, rows=2,
    #    quality=75
    #) 
開發者ID:JoshuaPiinRueyPan,項目名稱:ViolenceDetection,代碼行數:17,代碼來源:generate_documentation_images.py

示例13: _create_augment_pipeline

# 需要導入模塊: from imgaug import augmenters [as 別名]
# 或者: from imgaug.augmenters import MedianBlur [as 別名]
def _create_augment_pipeline():
    from imgaug import augmenters as iaa
    
    ### augmentors by https://github.com/aleju/imgaug
    sometimes = lambda aug: iaa.Sometimes(0.5, aug)

    # Define our sequence of augmentation steps that will be applied to every image
    # All augmenters with per_channel=0.5 will sample one value _per image_
    # in 50% of all cases. In all other cases they will sample new values
    # _per channel_.
    aug_pipe = iaa.Sequential(
        [
            # apply the following augmenters to most images
            #iaa.Fliplr(0.5), # horizontally flip 50% of all images
            #iaa.Flipud(0.2), # vertically flip 20% of all images
            #sometimes(iaa.Crop(percent=(0, 0.1))), # crop images by 0-10% of their height/width
            sometimes(iaa.Affine(
                #scale={"x": (0.8, 1.2), "y": (0.8, 1.2)}, # scale images to 80-120% of their size, individually per axis
                #translate_percent={"x": (-0.2, 0.2), "y": (-0.2, 0.2)}, # translate by -20 to +20 percent (per axis)
                #rotate=(-5, 5), # rotate by -45 to +45 degrees
                #shear=(-5, 5), # shear by -16 to +16 degrees
                #order=[0, 1], # use nearest neighbour or bilinear interpolation (fast)
                #cval=(0, 255), # if mode is constant, use a cval between 0 and 255
                #mode=ia.ALL # use any of scikit-image's warping modes (see 2nd image from the top for examples)
            )),
            # execute 0 to 5 of the following (less important) augmenters per image
            # don't execute all of them, as that would often be way too strong
            iaa.SomeOf((0, 5),
                [
                    #sometimes(iaa.Superpixels(p_replace=(0, 1.0), n_segments=(20, 200))), # convert images into their superpixel representation
                    iaa.OneOf([
                        iaa.GaussianBlur((0, 3.0)), # blur images with a sigma between 0 and 3.0
                        iaa.AverageBlur(k=(2, 7)), # blur image using local means with kernel sizes between 2 and 7
                        iaa.MedianBlur(k=(3, 11)), # blur image using local medians with kernel sizes between 2 and 7
                    ]),
                    iaa.Sharpen(alpha=(0, 1.0), lightness=(0.75, 1.5)), # sharpen images
                    #iaa.Emboss(alpha=(0, 1.0), strength=(0, 2.0)), # emboss images
                    # search either for all edges or for directed edges
                    #sometimes(iaa.OneOf([
                    #    iaa.EdgeDetect(alpha=(0, 0.7)),
                    #    iaa.DirectedEdgeDetect(alpha=(0, 0.7), direction=(0.0, 1.0)),
                    #])),
                    iaa.AdditiveGaussianNoise(loc=0, scale=(0.0, 0.05*255), per_channel=0.5), # add gaussian noise to images
                    iaa.OneOf([
                        iaa.Dropout((0.01, 0.1), per_channel=0.5), # randomly remove up to 10% of the pixels
                        #iaa.CoarseDropout((0.03, 0.15), size_percent=(0.02, 0.05), per_channel=0.2),
                    ]),
                    #iaa.Invert(0.05, per_channel=True), # invert color channels
                    iaa.Add((-10, 10), per_channel=0.5), # change brightness of images (by -10 to 10 of original value)
                    iaa.Multiply((0.5, 1.5), per_channel=0.5), # change brightness of images (50-150% of original value)
                    iaa.ContrastNormalization((0.5, 2.0), per_channel=0.5), # improve or worsen the contrast
                    #iaa.Grayscale(alpha=(0.0, 1.0)),
                    #sometimes(iaa.ElasticTransformation(alpha=(0.5, 3.5), sigma=0.25)), # move pixels locally around (with random strengths)
                    #sometimes(iaa.PiecewiseAffine(scale=(0.01, 0.05))) # sometimes move parts of the image around
                ],
                random_order=True
            )
        ],
        random_order=True
    )
    return aug_pipe 
開發者ID:penny4860,項目名稱:tf2-eager-yolo3,代碼行數:63,代碼來源:augment.py

示例14: get_augmentations

# 需要導入模塊: from imgaug import augmenters [as 別名]
# 或者: from imgaug.augmenters import MedianBlur [as 別名]
def get_augmentations():
    # applies the given augmenter in 50% of all cases,
    sometimes = lambda aug: iaa.Sometimes(0.5, aug)

    # Define our sequence of augmentation steps that will be applied to every image
    seq = iaa.Sequential([
            # execute 0 to 5 of the following (less important) augmenters per image
            iaa.SomeOf((0, 5),
                [
                    iaa.OneOf([
                        iaa.GaussianBlur((0, 3.0)),
                        iaa.AverageBlur(k=(2, 7)), 
                        iaa.MedianBlur(k=(3, 11)),
                    ]),
                    iaa.Sharpen(alpha=(0, 1.0), lightness=(0.75, 1.5)),
                    iaa.Emboss(alpha=(0, 1.0), strength=(0, 2.0)), 
                    # search either for all edges or for directed edges,
                    # blend the result with the original image using a blobby mask
                    iaa.SimplexNoiseAlpha(iaa.OneOf([
                        iaa.EdgeDetect(alpha=(0.5, 1.0)),
                        iaa.DirectedEdgeDetect(alpha=(0.5, 1.0), direction=(0.0, 1.0)),
                    ])),
                    iaa.AdditiveGaussianNoise(loc=0, scale=(0.0, 0.05*255), per_channel=0.5),
                    iaa.OneOf([
                        iaa.Dropout((0.01, 0.1), per_channel=0.5), # randomly remove up to 10% of the pixels
                        iaa.CoarseDropout((0.03, 0.15), size_percent=(0.02, 0.05), per_channel=0.2),
                    ]),
                    iaa.Add((-10, 10), per_channel=0.5), # change brightness of images (by -10 to 10 of original value)
                    iaa.AddToHueAndSaturation((-20, 20)), # change hue and saturation
                    # either change the brightness of the whole image (sometimes
                    # per channel) or change the brightness of subareas
                    iaa.OneOf([
                        iaa.Multiply((0.5, 1.5), per_channel=0.5),
                        iaa.FrequencyNoiseAlpha(
                            exponent=(-4, 0),
                            first=iaa.Multiply((0.5, 1.5), per_channel=True),
                            second=iaa.ContrastNormalization((0.5, 2.0))
                        )
                    ]),
                    iaa.ContrastNormalization((0.5, 2.0), per_channel=0.5), # improve or worsen the contrast
                    sometimes(iaa.ElasticTransformation(alpha=(0.5, 3.5), sigma=0.25)), # move pixels locally around (with random strengths)
                ],
                random_order=True
            )
        ],
        random_order=True
    )
    return seq

### data transforms 
開發者ID:xl-sr,項目名稱:CAL,代碼行數:52,代碼來源:dataloader.py


注:本文中的imgaug.augmenters.MedianBlur方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。