本文整理匯總了Python中imgaug.augmenters.Invert方法的典型用法代碼示例。如果您正苦於以下問題:Python augmenters.Invert方法的具體用法?Python augmenters.Invert怎麽用?Python augmenters.Invert使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類imgaug.augmenters
的用法示例。
在下文中一共展示了augmenters.Invert方法的4個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_returns_correct_instance
# 需要導入模塊: from imgaug import augmenters [as 別名]
# 或者: from imgaug.augmenters import Invert [as 別名]
def test_returns_correct_instance(self):
aug = iaa.pillike.Solarize()
assert isinstance(aug, iaa.Invert)
assert aug.per_channel.value == 0
assert aug.min_value is None
assert aug.max_value is None
assert np.isclose(aug.threshold.value, 128)
assert aug.invert_above_threshold.value == 1
示例2: chapter_augmenters_invert
# 需要導入模塊: from imgaug import augmenters [as 別名]
# 或者: from imgaug.augmenters import Invert [as 別名]
def chapter_augmenters_invert():
aug = iaa.Invert(0.5)
run_and_save_augseq(
"invert.jpg", aug,
[ia.quokka(size=(64, 64)) for _ in range(16)], cols=8, rows=2
)
aug = iaa.Invert(0.25, per_channel=0.5)
run_and_save_augseq(
"invert_per_channel.jpg", aug,
[ia.quokka(size=(64, 64)) for _ in range(16)], cols=8, rows=2
)
示例3: _create_augment_pipeline
# 需要導入模塊: from imgaug import augmenters [as 別名]
# 或者: from imgaug.augmenters import Invert [as 別名]
def _create_augment_pipeline():
from imgaug import augmenters as iaa
### augmentors by https://github.com/aleju/imgaug
sometimes = lambda aug: iaa.Sometimes(0.5, aug)
# Define our sequence of augmentation steps that will be applied to every image
# All augmenters with per_channel=0.5 will sample one value _per image_
# in 50% of all cases. In all other cases they will sample new values
# _per channel_.
aug_pipe = iaa.Sequential(
[
# apply the following augmenters to most images
#iaa.Fliplr(0.5), # horizontally flip 50% of all images
#iaa.Flipud(0.2), # vertically flip 20% of all images
#sometimes(iaa.Crop(percent=(0, 0.1))), # crop images by 0-10% of their height/width
sometimes(iaa.Affine(
#scale={"x": (0.8, 1.2), "y": (0.8, 1.2)}, # scale images to 80-120% of their size, individually per axis
#translate_percent={"x": (-0.2, 0.2), "y": (-0.2, 0.2)}, # translate by -20 to +20 percent (per axis)
#rotate=(-5, 5), # rotate by -45 to +45 degrees
#shear=(-5, 5), # shear by -16 to +16 degrees
#order=[0, 1], # use nearest neighbour or bilinear interpolation (fast)
#cval=(0, 255), # if mode is constant, use a cval between 0 and 255
#mode=ia.ALL # use any of scikit-image's warping modes (see 2nd image from the top for examples)
)),
# execute 0 to 5 of the following (less important) augmenters per image
# don't execute all of them, as that would often be way too strong
iaa.SomeOf((0, 5),
[
#sometimes(iaa.Superpixels(p_replace=(0, 1.0), n_segments=(20, 200))), # convert images into their superpixel representation
iaa.OneOf([
iaa.GaussianBlur((0, 3.0)), # blur images with a sigma between 0 and 3.0
iaa.AverageBlur(k=(2, 7)), # blur image using local means with kernel sizes between 2 and 7
iaa.MedianBlur(k=(3, 11)), # blur image using local medians with kernel sizes between 2 and 7
]),
iaa.Sharpen(alpha=(0, 1.0), lightness=(0.75, 1.5)), # sharpen images
#iaa.Emboss(alpha=(0, 1.0), strength=(0, 2.0)), # emboss images
# search either for all edges or for directed edges
#sometimes(iaa.OneOf([
# iaa.EdgeDetect(alpha=(0, 0.7)),
# iaa.DirectedEdgeDetect(alpha=(0, 0.7), direction=(0.0, 1.0)),
#])),
iaa.AdditiveGaussianNoise(loc=0, scale=(0.0, 0.05*255), per_channel=0.5), # add gaussian noise to images
iaa.OneOf([
iaa.Dropout((0.01, 0.1), per_channel=0.5), # randomly remove up to 10% of the pixels
#iaa.CoarseDropout((0.03, 0.15), size_percent=(0.02, 0.05), per_channel=0.2),
]),
#iaa.Invert(0.05, per_channel=True), # invert color channels
iaa.Add((-10, 10), per_channel=0.5), # change brightness of images (by -10 to 10 of original value)
iaa.Multiply((0.5, 1.5), per_channel=0.5), # change brightness of images (50-150% of original value)
iaa.ContrastNormalization((0.5, 2.0), per_channel=0.5), # improve or worsen the contrast
#iaa.Grayscale(alpha=(0.0, 1.0)),
#sometimes(iaa.ElasticTransformation(alpha=(0.5, 3.5), sigma=0.25)), # move pixels locally around (with random strengths)
#sometimes(iaa.PiecewiseAffine(scale=(0.01, 0.05))) # sometimes move parts of the image around
],
random_order=True
)
],
random_order=True
)
return aug_pipe
示例4: test_Invert
# 需要導入模塊: from imgaug import augmenters [as 別名]
# 或者: from imgaug.augmenters import Invert [as 別名]
def test_Invert():
reseed()
zeros = np.zeros((4, 4, 3), dtype=np.uint8)
keypoints = [ia.KeypointsOnImage([ia.Keypoint(x=0, y=0), ia.Keypoint(x=1, y=1),
ia.Keypoint(x=2, y=2)], shape=zeros.shape)]
observed = iaa.Invert(p=1.0).augment_image(zeros + 255)
expected = zeros
assert np.array_equal(observed, expected)
observed = iaa.Invert(p=0.0).augment_image(zeros + 255)
expected = zeros + 255
assert np.array_equal(observed, expected)
observed = iaa.Invert(p=1.0, max_value=200).augment_image(zeros + 200)
expected = zeros
assert np.array_equal(observed, expected)
observed = iaa.Invert(p=1.0, max_value=200, min_value=100).augment_image(zeros + 200)
expected = zeros + 100
assert np.array_equal(observed, expected)
observed = iaa.Invert(p=1.0, max_value=200, min_value=100).augment_image(zeros + 100)
expected = zeros + 200
assert np.array_equal(observed, expected)
nb_iterations = 1000
nb_inverted = 0
for i in sm.xrange(nb_iterations):
observed = iaa.Invert(p=0.5).augment_image(zeros + 256)
if np.array_equal(observed, zeros):
nb_inverted += 1
pinv = nb_inverted / nb_iterations
assert 0.4 <= pinv <= 0.6
# keypoints shouldnt be changed
aug = iaa.Invert(p=1.0)
aug_det = iaa.Invert(p=1.0).to_deterministic()
observed = aug.augment_keypoints(keypoints)
expected = keypoints
assert keypoints_equal(observed, expected)
observed = aug_det.augment_keypoints(keypoints)
expected = keypoints
assert keypoints_equal(observed, expected)