當前位置: 首頁>>代碼示例>>Python>>正文


Python augmenters.Flipud方法代碼示例

本文整理匯總了Python中imgaug.augmenters.Flipud方法的典型用法代碼示例。如果您正苦於以下問題:Python augmenters.Flipud方法的具體用法?Python augmenters.Flipud怎麽用?Python augmenters.Flipud使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在imgaug.augmenters的用法示例。


在下文中一共展示了augmenters.Flipud方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: from imgaug import augmenters [as 別名]
# 或者: from imgaug.augmenters import Flipud [as 別名]
def __init__(self, dataset_path,scale,k_fold_test=1, mode='train'):
        super().__init__()
        self.mode = mode
        self.img_path=dataset_path+'/img'
        self.mask_path=dataset_path+'/mask'
        self.image_lists,self.label_lists=self.read_list(self.img_path,k_fold_test=k_fold_test)
        self.flip =iaa.SomeOf((2,4),[
             iaa.Fliplr(0.5),
             iaa.Flipud(0.5),
             iaa.Affine(rotate=(-30, 30)),
             iaa.AdditiveGaussianNoise(scale=(0.0,0.08*255))], random_order=True)
        # resize
        self.resize_label = transforms.Resize(scale, Image.NEAREST)
        self.resize_img = transforms.Resize(scale, Image.BILINEAR)
        # normalization
        self.to_tensor = transforms.ToTensor() 
開發者ID:FENGShuanglang,項目名稱:Pytorch_Medical_Segmention_Template,代碼行數:18,代碼來源:Linear_lesion.py

示例2: img_aug

# 需要導入模塊: from imgaug import augmenters [as 別名]
# 或者: from imgaug.augmenters import Flipud [as 別名]
def img_aug(img, mask):
    mask = np.where(mask > 0, 0, 255).astype(np.uint8)
    flipper = iaa.Fliplr(0.5).to_deterministic()
    mask = flipper.augment_image(mask)
    img = flipper.augment_image(img)
    vflipper = iaa.Flipud(0.5).to_deterministic()
    img = vflipper.augment_image(img)
    mask = vflipper.augment_image(mask)
    if random.random() < 0.5:
        rot_time = random.choice([1, 2, 3])
        for i in range(rot_time):
            img = np.rot90(img)
            mask = np.rot90(mask)
    if random.random() < 0.5:
        translater = iaa.Affine(translate_percent={"x": (-0.2, 0.2), "y": (-0.2, 0.2)},
                                scale={"x": (0.8, 1.2), "y": (0.8, 1.2)},
                                shear=(-8, 8),
                                cval=(255)
                                ).to_deterministic()
        img = translater.augment_image(img)
        mask = translater.augment_image(mask)
    # if random.random() < 0.5:
    #     img = cv2.cvtColor(img,cv2.COLOR_BGR2RGB)
    mask = np.where(mask > 0, 0, 255).astype(np.uint8)
    return img, mask 
開發者ID:Tshzzz,項目名稱:jinnan_unet_baseline,代碼行數:27,代碼來源:datasets.py

示例3: example_single_augmenters

# 需要導入模塊: from imgaug import augmenters [as 別名]
# 或者: from imgaug.augmenters import Flipud [as 別名]
def example_single_augmenters():
    print("Example: Single Augmenters")
    from imgaug import augmenters as iaa
    images = np.random.randint(0, 255, (16, 128, 128, 3), dtype=np.uint8)

    flipper = iaa.Fliplr(1.0) # always horizontally flip each input image
    images[0] = flipper.augment_image(images[0]) # horizontally flip image 0

    vflipper = iaa.Flipud(0.9) # vertically flip each input image with 90% probability
    images[1] = vflipper.augment_image(images[1]) # probably vertically flip image 1

    blurer = iaa.GaussianBlur(3.0)
    images[2] = blurer.augment_image(images[2]) # blur image 2 by a sigma of 3.0
    images[3] = blurer.augment_image(images[3]) # blur image 3 by a sigma of 3.0 too

    translater = iaa.Affine(translate_px={"x": -16}) # move each input image by 16px to the left
    images[4] = translater.augment_image(images[4]) # move image 4 to the left

    scaler = iaa.Affine(scale={"y": (0.8, 1.2)}) # scale each input image to 80-120% on the y axis
    images[5] = scaler.augment_image(images[5]) # scale image 5 by 80-120% on the y axis 
開發者ID:JoshuaPiinRueyPan,項目名稱:ViolenceDetection,代碼行數:22,代碼來源:test_readme_examples.py

示例4: _load_augmentation_aug_geometric

# 需要導入模塊: from imgaug import augmenters [as 別名]
# 或者: from imgaug.augmenters import Flipud [as 別名]
def _load_augmentation_aug_geometric():
    return iaa.OneOf([
        iaa.Sequential([iaa.Fliplr(0.5), iaa.Flipud(0.2)]),
        iaa.CropAndPad(percent=(-0.05, 0.1),
                       pad_mode='constant',
                       pad_cval=(0, 255)),
        iaa.Crop(percent=(0.0, 0.1)),
        iaa.Crop(percent=(0.3, 0.5)),
        iaa.Crop(percent=(0.3, 0.5)),
        iaa.Crop(percent=(0.3, 0.5)),
        iaa.Sequential([
            iaa.Affine(
                    # scale images to 80-120% of their size,
                    # individually per axis
                    scale={"x": (0.8, 1.2), "y": (0.8, 1.2)},
                    # translate by -20 to +20 percent (per axis)
                    translate_percent={"x": (-0.2, 0.2), "y": (-0.2, 0.2)},
                    rotate=(-45, 45),  # rotate by -45 to +45 degrees
                    shear=(-16, 16),  # shear by -16 to +16 degrees
                    # use nearest neighbour or bilinear interpolation (fast)
                    order=[0, 1],
                    # if mode is constant, use a cval between 0 and 255
                    mode='constant',
                    cval=(0, 255),
                    # use any of scikit-image's warping modes
                    # (see 2nd image from the top for examples)
            ),
            iaa.Sometimes(0.3, iaa.Crop(percent=(0.3, 0.5)))])
    ]) 
開發者ID:divamgupta,項目名稱:image-segmentation-keras,代碼行數:31,代碼來源:augmentation.py

示例5: example_using_augmenters_only_once

# 需要導入模塊: from imgaug import augmenters [as 別名]
# 或者: from imgaug.augmenters import Flipud [as 別名]
def example_using_augmenters_only_once():
    print("Example: Using Augmenters Only Once")
    from imgaug import augmenters as iaa
    import numpy as np

    images = np.random.randint(0, 255, (16, 128, 128, 3), dtype=np.uint8)

    # always horizontally flip each input image
    images_aug = iaa.Fliplr(1.0)(images=images)

    # vertically flip each input image with 90% probability
    images_aug = iaa.Flipud(0.9)(images=images)

    # blur 50% of all images using a gaussian kernel with a sigma of 3.0
    images_aug = iaa.Sometimes(0.5, iaa.GaussianBlur(3.0))(images=images) 
開發者ID:aleju,項目名稱:imgaug,代碼行數:17,代碼來源:check_readme_examples.py

示例6: test_returns_flipud

# 需要導入模塊: from imgaug import augmenters [as 別名]
# 或者: from imgaug.augmenters import Flipud [as 別名]
def test_returns_flipud(self):
        aug = iaa.VerticalFlip(0.5)
        assert isinstance(aug, iaa.Flipud)
        assert np.allclose(aug.p.p.value, 0.5) 
開發者ID:aleju,項目名稱:imgaug,代碼行數:6,代碼來源:test_flip.py

示例7: create_aug

# 需要導入模塊: from imgaug import augmenters [as 別名]
# 或者: from imgaug.augmenters import Flipud [as 別名]
def create_aug(self, *args, **kwargs):
        return iaa.Flipud(*args, **kwargs) 
開發者ID:aleju,項目名稱:imgaug,代碼行數:4,代碼來源:test_flip.py

示例8: apply_augment_sequence

# 需要導入模塊: from imgaug import augmenters [as 別名]
# 或者: from imgaug.augmenters import Flipud [as 別名]
def apply_augment_sequence(image_set_x, image_set_y):
	"""
		Randomly flip and rotate the images in both set with deterministic order.  This turns 1 image into 8 images.

		Parameters:
			image_set_x: List of Images (X) to augment
			image_set_y: List of corresponding Y image to augment in the same deterministic order applied to image_set_x

		Returns:
			image_setx_aug, image_sety_aug : augmented versions of the inputs
	"""

	# Sometimes(0.5, ...) applies the given augmenter in 50% of all cases,
	# e.g. Sometimes(0.5, GaussianBlur(0.3)) would blur roughly every second image.
	sometimes = lambda aug: iaa.Sometimes(0.5, aug)

	seq = iaa.Sequential(
		[
			iaa.Fliplr(0.5),
			iaa.Flipud(0.5),
			sometimes(iaa.Affine(
				rotate=(90, 90),
			))
		],
		random_order=False)
	seq_det = seq.to_deterministic()
	image_setx_aug = seq_det.augment_images(image_set_x)
	image_sety_aug = seq_det.augment_images(image_set_y)
	return image_setx_aug, image_sety_aug 
開發者ID:jackkwok,項目名稱:neural-road-inspector,代碼行數:31,代碼來源:augmentation.py

示例9: aug_on_fly

# 需要導入模塊: from imgaug import augmenters [as 別名]
# 或者: from imgaug.augmenters import Flipud [as 別名]
def aug_on_fly(img, det_mask, cls_mask):
    """Do augmentation with different combination on each training batch
    """
    def image_basic_augmentation(image, masks, ratio_operations=0.9):
        # without additional operations
        # according to the paper, operations such as shearing, fliping horizontal/vertical,
        # rotating, zooming and channel shifting will be apply
        sometimes = lambda aug: iaa.Sometimes(ratio_operations, aug)
        hor_flip_angle = np.random.uniform(0, 1)
        ver_flip_angle = np.random.uniform(0, 1)
        seq = iaa.Sequential([
            sometimes(
                iaa.SomeOf((0, 5), [
                iaa.Fliplr(hor_flip_angle),
                iaa.Flipud(ver_flip_angle),
                iaa.Affine(shear=(-16, 16)),
                iaa.Affine(scale={'x': (1, 1.6), 'y': (1, 1.6)}),
                iaa.PerspectiveTransform(scale=(0.01, 0.1))
            ]))
        ])
        det_mask, cls_mask = masks[0], masks[1]
        seq_to_deterministic = seq.to_deterministic()
        aug_img = seq_to_deterministic.augment_images(image)
        aug_det_mask = seq_to_deterministic.augment_images(det_mask)
        aug_cls_mask = seq_to_deterministic.augment_images(cls_mask)
        return aug_img, aug_det_mask, aug_cls_mask

    aug_image, aug_det_mask, aug_cls_mask = image_basic_augmentation(image=img, masks=[det_mask, cls_mask])
    return aug_image, aug_det_mask, aug_cls_mask 
開發者ID:zhuyiche,項目名稱:sfcn-opi,代碼行數:31,代碼來源:util.py

示例10: chapter_augmenters_flipud

# 需要導入模塊: from imgaug import augmenters [as 別名]
# 或者: from imgaug.augmenters import Flipud [as 別名]
def chapter_augmenters_flipud():
    aug = iaa.Flipud(0.5)
    run_and_save_augseq(
        "flipud.jpg", aug,
        [ia.quokka(size=(64, 64)) for _ in range(16)], cols=8, rows=2
    ) 
開發者ID:JoshuaPiinRueyPan,項目名稱:ViolenceDetection,代碼行數:8,代碼來源:generate_documentation_images.py

示例11: test_find

# 需要導入模塊: from imgaug import augmenters [as 別名]
# 或者: from imgaug.augmenters import Flipud [as 別名]
def test_find():
    reseed()

    noop1 = iaa.Noop(name="Noop")
    fliplr = iaa.Fliplr(name="Fliplr")
    flipud = iaa.Flipud(name="Flipud")
    noop2 = iaa.Noop(name="Noop2")
    seq2 = iaa.Sequential([flipud, noop2], name="Seq2")
    seq1 = iaa.Sequential([noop1, fliplr, seq2], name="Seq")

    augs = seq1.find_augmenters_by_name("Seq")
    assert len(augs) == 1
    assert augs[0] == seq1

    augs = seq1.find_augmenters_by_name("Seq2")
    assert len(augs) == 1
    assert augs[0] == seq2

    augs = seq1.find_augmenters_by_names(["Seq", "Seq2"])
    assert len(augs) == 2
    assert augs[0] == seq1
    assert augs[1] == seq2

    augs = seq1.find_augmenters_by_name(r"Seq.*", regex=True)
    assert len(augs) == 2
    assert augs[0] == seq1
    assert augs[1] == seq2

    augs = seq1.find_augmenters(lambda aug, parents: aug.name in ["Seq", "Seq2"])
    assert len(augs) == 2
    assert augs[0] == seq1
    assert augs[1] == seq2

    augs = seq1.find_augmenters(lambda aug, parents: aug.name in ["Seq", "Seq2"] and len(parents) > 0)
    assert len(augs) == 1
    assert augs[0] == seq2

    augs = seq1.find_augmenters(lambda aug, parents: aug.name in ["Seq", "Seq2"], flat=False)
    assert len(augs) == 2
    assert augs[0] == seq1
    assert augs[1] == [seq2] 
開發者ID:JoshuaPiinRueyPan,項目名稱:ViolenceDetection,代碼行數:43,代碼來源:test.py

示例12: test_remove

# 需要導入模塊: from imgaug import augmenters [as 別名]
# 或者: from imgaug.augmenters import Flipud [as 別名]
def test_remove():
    reseed()

    def get_seq():
        noop1 = iaa.Noop(name="Noop")
        fliplr = iaa.Fliplr(name="Fliplr")
        flipud = iaa.Flipud(name="Flipud")
        noop2 = iaa.Noop(name="Noop2")
        seq2 = iaa.Sequential([flipud, noop2], name="Seq2")
        seq1 = iaa.Sequential([noop1, fliplr, seq2], name="Seq")
        return seq1

    augs = get_seq()
    augs = augs.remove_augmenters(lambda aug, parents: aug.name == "Seq2")
    seqs = augs.find_augmenters_by_name(r"Seq.*", regex=True)
    assert len(seqs) == 1
    assert seqs[0].name == "Seq"

    augs = get_seq()
    augs = augs.remove_augmenters(lambda aug, parents: aug.name == "Seq2" and len(parents) == 0)
    seqs = augs.find_augmenters_by_name(r"Seq.*", regex=True)
    assert len(seqs) == 2
    assert seqs[0].name == "Seq"
    assert seqs[1].name == "Seq2"

    augs = get_seq()
    augs = augs.remove_augmenters(lambda aug, parents: True)
    assert augs is not None
    assert isinstance(augs, iaa.Noop)

    augs = get_seq()
    augs = augs.remove_augmenters(lambda aug, parents: True, noop_if_topmost=False)
    assert augs is None 
開發者ID:JoshuaPiinRueyPan,項目名稱:ViolenceDetection,代碼行數:35,代碼來源:test.py

示例13: __init__

# 需要導入模塊: from imgaug import augmenters [as 別名]
# 或者: from imgaug.augmenters import Flipud [as 別名]
def __init__(self):
        self.imgaug_transform = iaa.Flipud(p=1)
        self.augmentor_op = Operations.Flip(probability=1, top_bottom_left_right="TOP_BOTTOM")
        self.solt_stream = slc.Stream([slt.RandomFlip(p=1, axis=0)]) 
開發者ID:albumentations-team,項目名稱:albumentations,代碼行數:6,代碼來源:benchmark.py

示例14: processor

# 需要導入模塊: from imgaug import augmenters [as 別名]
# 或者: from imgaug.augmenters import Flipud [as 別名]
def processor(self):
        return iaa.Flipud(1) 
開發者ID:albumentations-team,項目名稱:albumentations,代碼行數:4,代碼來源:transforms.py

示例15: train

# 需要導入模塊: from imgaug import augmenters [as 別名]
# 或者: from imgaug.augmenters import Flipud [as 別名]
def train(model, dataset_dir, subset):
    """Train the model."""
    # Training dataset.
    dataset_train = NucleusDataset()
    dataset_train.load_nucleus(dataset_dir, subset)
    dataset_train.prepare()

    # Validation dataset
    dataset_val = NucleusDataset()
    dataset_val.load_nucleus(dataset_dir, "val")
    dataset_val.prepare()

    # Image augmentation
    # http://imgaug.readthedocs.io/en/latest/source/augmenters.html
    augmentation = iaa.SomeOf((0, 2), [
        iaa.Fliplr(0.5),
        iaa.Flipud(0.5),
        iaa.OneOf([iaa.Affine(rotate=90),
                   iaa.Affine(rotate=180),
                   iaa.Affine(rotate=270)]),
        iaa.Multiply((0.8, 1.5)),
        iaa.GaussianBlur(sigma=(0.0, 5.0))
    ])

    # *** This training schedule is an example. Update to your needs ***

    # If starting from imagenet, train heads only for a bit
    # since they have random weights
    print("Train network heads")
    model.train(dataset_train, dataset_val,
                learning_rate=config.LEARNING_RATE,
                epochs=20,
                augmentation=augmentation,
                layers='heads')

    print("Train all layers")
    model.train(dataset_train, dataset_val,
                learning_rate=config.LEARNING_RATE,
                epochs=40,
                augmentation=augmentation,
                layers='all')


############################################################
#  RLE Encoding
############################################################ 
開發者ID:dmechea,項目名稱:PanopticSegmentation,代碼行數:48,代碼來源:nucleus.py


注:本文中的imgaug.augmenters.Flipud方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。