當前位置: 首頁>>代碼示例>>Python>>正文


Python augmenters.Emboss方法代碼示例

本文整理匯總了Python中imgaug.augmenters.Emboss方法的典型用法代碼示例。如果您正苦於以下問題:Python augmenters.Emboss方法的具體用法?Python augmenters.Emboss怎麽用?Python augmenters.Emboss使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在imgaug.augmenters的用法示例。


在下文中一共展示了augmenters.Emboss方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _load_augmentation_aug_non_geometric

# 需要導入模塊: from imgaug import augmenters [as 別名]
# 或者: from imgaug.augmenters import Emboss [as 別名]
def _load_augmentation_aug_non_geometric():
    return iaa.Sequential([
        iaa.Sometimes(0.3, iaa.Multiply((0.5, 1.5), per_channel=0.5)),
        iaa.Sometimes(0.2, iaa.JpegCompression(compression=(70, 99))),
        iaa.Sometimes(0.2, iaa.GaussianBlur(sigma=(0, 3.0))),
        iaa.Sometimes(0.2, iaa.MotionBlur(k=15, angle=[-45, 45])),
        iaa.Sometimes(0.2, iaa.MultiplyHue((0.5, 1.5))),
        iaa.Sometimes(0.2, iaa.MultiplySaturation((0.5, 1.5))),
        iaa.Sometimes(0.34, iaa.MultiplyHueAndSaturation((0.5, 1.5),
                                                         per_channel=True)),
        iaa.Sometimes(0.34, iaa.Grayscale(alpha=(0.0, 1.0))),
        iaa.Sometimes(0.2, iaa.ChangeColorTemperature((1100, 10000))),
        iaa.Sometimes(0.1, iaa.GammaContrast((0.5, 2.0))),
        iaa.Sometimes(0.2, iaa.SigmoidContrast(gain=(3, 10),
                                               cutoff=(0.4, 0.6))),
        iaa.Sometimes(0.1, iaa.CLAHE()),
        iaa.Sometimes(0.1, iaa.HistogramEqualization()),
        iaa.Sometimes(0.2, iaa.LinearContrast((0.5, 2.0), per_channel=0.5)),
        iaa.Sometimes(0.1, iaa.Emboss(alpha=(0, 1.0), strength=(0, 2.0)))
    ]) 
開發者ID:divamgupta,項目名稱:image-segmentation-keras,代碼行數:22,代碼來源:augmentation.py

示例2: chapter_augmenters_emboss

# 需要導入模塊: from imgaug import augmenters [as 別名]
# 或者: from imgaug.augmenters import Emboss [as 別名]
def chapter_augmenters_emboss():
    aug = iaa.Emboss(alpha=(0.0, 1.0), strength=(0.5, 1.5))
    run_and_save_augseq(
        "emboss.jpg", aug,
        [ia.quokka(size=(64, 64)) for _ in range(16)], cols=8, rows=2
    )

    #alphas = [1/8*i for i in range(8)]
    alphas = np.linspace(0, 1.0, num=8)
    run_and_save_augseq(
        "emboss_vary_alpha.jpg",
        [iaa.Emboss(alpha=alpha, strength=1.0) for alpha in alphas],
        [ia.quokka(size=(64, 64)) for _ in range(8)], cols=8, rows=1
    )

    #strengths = [0.5+(0.5/8)*i for i in range(8)]
    strengths = np.linspace(0.5, 1.5, num=8)
    run_and_save_augseq(
        "emboss_vary_strength.jpg",
        [iaa.Emboss(alpha=1.0, strength=strength) for strength in strengths],
        [ia.quokka(size=(64, 64)) for _ in range(8)], cols=8, rows=1
    ) 
開發者ID:JoshuaPiinRueyPan,項目名稱:ViolenceDetection,代碼行數:24,代碼來源:generate_documentation_images.py

示例3: test_alpha_0_strength_1

# 需要導入模塊: from imgaug import augmenters [as 別名]
# 或者: from imgaug.augmenters import Emboss [as 別名]
def test_alpha_0_strength_1(self):
        aug = iaa.Emboss(alpha=0, strength=1)
        observed = aug.augment_image(self.base_img)
        expected = self.base_img
        assert self._allclose(observed, expected) 
開發者ID:aleju,項目名稱:imgaug,代碼行數:7,代碼來源:test_convolutional.py

示例4: test_alpha_1_strength_1

# 需要導入模塊: from imgaug import augmenters [as 別名]
# 或者: from imgaug.augmenters import Emboss [as 別名]
def test_alpha_1_strength_1(self):
        aug = iaa.Emboss(alpha=1.0, strength=1)
        observed = aug.augment_image(self.base_img)
        expected = self._compute_embossed_base_img(
            self.base_img, alpha=1.0, strength=1)
        assert self._allclose(observed, expected) 
開發者ID:aleju,項目名稱:imgaug,代碼行數:8,代碼來源:test_convolutional.py

示例5: test_alpha_050_strength_1

# 需要導入模塊: from imgaug import augmenters [as 別名]
# 或者: from imgaug.augmenters import Emboss [as 別名]
def test_alpha_050_strength_1(self):
        aug = iaa.Emboss(alpha=0.5, strength=1)
        observed = aug.augment_image(self.base_img)
        expected = self._compute_embossed_base_img(
            self.base_img, alpha=0.5, strength=1)
        assert self._allclose(observed, expected.astype(np.uint8)) 
開發者ID:aleju,項目名稱:imgaug,代碼行數:8,代碼來源:test_convolutional.py

示例6: test_alpha_075_strength_1

# 需要導入模塊: from imgaug import augmenters [as 別名]
# 或者: from imgaug.augmenters import Emboss [as 別名]
def test_alpha_075_strength_1(self):
        aug = iaa.Emboss(alpha=0.75, strength=1)
        observed = aug.augment_image(self.base_img)
        expected = self._compute_embossed_base_img(
            self.base_img, alpha=0.75, strength=1)
        assert self._allclose(observed, expected) 
開發者ID:aleju,項目名稱:imgaug,代碼行數:8,代碼來源:test_convolutional.py

示例7: test_alpha_stochastic_parameter_strength_1

# 需要導入模塊: from imgaug import augmenters [as 別名]
# 或者: from imgaug.augmenters import Emboss [as 別名]
def test_alpha_stochastic_parameter_strength_1(self):
        aug = iaa.Emboss(alpha=iap.Choice([0.5, 1.0]), strength=1)
        observed = aug.augment_image(self.base_img)
        expected1 = self._compute_embossed_base_img(
            self.base_img, alpha=0.5, strength=1)
        expected2 = self._compute_embossed_base_img(
            self.base_img, alpha=1.0, strength=1)
        assert (
            self._allclose(observed, expected1)
            or self._allclose(observed, expected2)
        ) 
開發者ID:aleju,項目名稱:imgaug,代碼行數:13,代碼來源:test_convolutional.py

示例8: test_alpha_1_strength_2

# 需要導入模塊: from imgaug import augmenters [as 別名]
# 或者: from imgaug.augmenters import Emboss [as 別名]
def test_alpha_1_strength_2(self):
        aug = iaa.Emboss(alpha=1.0, strength=2)
        observed = aug.augment_image(self.base_img)
        expected = self._compute_embossed_base_img(
            self.base_img, alpha=1.0, strength=2)
        assert self._allclose(observed, expected) 
開發者ID:aleju,項目名稱:imgaug,代碼行數:8,代碼來源:test_convolutional.py

示例9: test_alpha_1_strength_3

# 需要導入模塊: from imgaug import augmenters [as 別名]
# 或者: from imgaug.augmenters import Emboss [as 別名]
def test_alpha_1_strength_3(self):
        aug = iaa.Emboss(alpha=1.0, strength=3)
        observed = aug.augment_image(self.base_img)
        expected = self._compute_embossed_base_img(
            self.base_img, alpha=1.0, strength=3)
        assert self._allclose(observed, expected) 
開發者ID:aleju,項目名稱:imgaug,代碼行數:8,代碼來源:test_convolutional.py

示例10: test_alpha_1_strength_6

# 需要導入模塊: from imgaug import augmenters [as 別名]
# 或者: from imgaug.augmenters import Emboss [as 別名]
def test_alpha_1_strength_6(self):
        aug = iaa.Emboss(alpha=1.0, strength=6)
        observed = aug.augment_image(self.base_img)
        expected = self._compute_embossed_base_img(
            self.base_img, alpha=1.0, strength=6)
        assert self._allclose(observed, expected) 
開發者ID:aleju,項目名稱:imgaug,代碼行數:8,代碼來源:test_convolutional.py

示例11: test_alpha_1_strength_stochastic_parameter

# 需要導入模塊: from imgaug import augmenters [as 別名]
# 或者: from imgaug.augmenters import Emboss [as 別名]
def test_alpha_1_strength_stochastic_parameter(self):
        aug = iaa.Emboss(alpha=1.0, strength=iap.Choice([1.0, 2.5]))
        observed = aug.augment_image(self.base_img)
        expected1 = self._compute_embossed_base_img(
            self.base_img, alpha=1.0, strength=1.0)
        expected2 = self._compute_embossed_base_img(
            self.base_img, alpha=1.0, strength=2.5)
        assert (
            self._allclose(observed, expected1)
            or self._allclose(observed, expected2)
        ) 
開發者ID:aleju,項目名稱:imgaug,代碼行數:13,代碼來源:test_convolutional.py

示例12: test_failure_on_invalid_datatype_for_strength

# 需要導入模塊: from imgaug import augmenters [as 別名]
# 或者: from imgaug.augmenters import Emboss [as 別名]
def test_failure_on_invalid_datatype_for_strength(self):
        # don't use assertRaisesRegex, because it doesnt exist in 2.7
        got_exception = False
        try:
            _ = iaa.Emboss(alpha=1.0, strength="test")
        except Exception as exc:
            assert "Expected " in str(exc)
            got_exception = True
        assert got_exception 
開發者ID:aleju,項目名稱:imgaug,代碼行數:11,代碼來源:test_convolutional.py

示例13: __init__

# 需要導入模塊: from imgaug import augmenters [as 別名]
# 或者: from imgaug.augmenters import Emboss [as 別名]
def __init__(self, alpha=(0.2, 0.5), strength=(0.2, 0.7), prob=0.5):
        super().__init__(prob)
        self.processor = iaa.Emboss(alpha, strength) 
開發者ID:selimsef,項目名稱:dsb2018_topcoders,代碼行數:5,代碼來源:transforms.py

示例14: processor

# 需要導入模塊: from imgaug import augmenters [as 別名]
# 或者: from imgaug.augmenters import Emboss [as 別名]
def processor(self):
        return iaa.Emboss(self.alpha, self.strength) 
開發者ID:albumentations-team,項目名稱:albumentations,代碼行數:4,代碼來源:transforms.py

示例15: _create_augment_pipeline

# 需要導入模塊: from imgaug import augmenters [as 別名]
# 或者: from imgaug.augmenters import Emboss [as 別名]
def _create_augment_pipeline():
    from imgaug import augmenters as iaa
    
    ### augmentors by https://github.com/aleju/imgaug
    sometimes = lambda aug: iaa.Sometimes(0.5, aug)

    # Define our sequence of augmentation steps that will be applied to every image
    # All augmenters with per_channel=0.5 will sample one value _per image_
    # in 50% of all cases. In all other cases they will sample new values
    # _per channel_.
    aug_pipe = iaa.Sequential(
        [
            # apply the following augmenters to most images
            #iaa.Fliplr(0.5), # horizontally flip 50% of all images
            #iaa.Flipud(0.2), # vertically flip 20% of all images
            #sometimes(iaa.Crop(percent=(0, 0.1))), # crop images by 0-10% of their height/width
            sometimes(iaa.Affine(
                #scale={"x": (0.8, 1.2), "y": (0.8, 1.2)}, # scale images to 80-120% of their size, individually per axis
                #translate_percent={"x": (-0.2, 0.2), "y": (-0.2, 0.2)}, # translate by -20 to +20 percent (per axis)
                #rotate=(-5, 5), # rotate by -45 to +45 degrees
                #shear=(-5, 5), # shear by -16 to +16 degrees
                #order=[0, 1], # use nearest neighbour or bilinear interpolation (fast)
                #cval=(0, 255), # if mode is constant, use a cval between 0 and 255
                #mode=ia.ALL # use any of scikit-image's warping modes (see 2nd image from the top for examples)
            )),
            # execute 0 to 5 of the following (less important) augmenters per image
            # don't execute all of them, as that would often be way too strong
            iaa.SomeOf((0, 5),
                [
                    #sometimes(iaa.Superpixels(p_replace=(0, 1.0), n_segments=(20, 200))), # convert images into their superpixel representation
                    iaa.OneOf([
                        iaa.GaussianBlur((0, 3.0)), # blur images with a sigma between 0 and 3.0
                        iaa.AverageBlur(k=(2, 7)), # blur image using local means with kernel sizes between 2 and 7
                        iaa.MedianBlur(k=(3, 11)), # blur image using local medians with kernel sizes between 2 and 7
                    ]),
                    iaa.Sharpen(alpha=(0, 1.0), lightness=(0.75, 1.5)), # sharpen images
                    #iaa.Emboss(alpha=(0, 1.0), strength=(0, 2.0)), # emboss images
                    # search either for all edges or for directed edges
                    #sometimes(iaa.OneOf([
                    #    iaa.EdgeDetect(alpha=(0, 0.7)),
                    #    iaa.DirectedEdgeDetect(alpha=(0, 0.7), direction=(0.0, 1.0)),
                    #])),
                    iaa.AdditiveGaussianNoise(loc=0, scale=(0.0, 0.05*255), per_channel=0.5), # add gaussian noise to images
                    iaa.OneOf([
                        iaa.Dropout((0.01, 0.1), per_channel=0.5), # randomly remove up to 10% of the pixels
                        #iaa.CoarseDropout((0.03, 0.15), size_percent=(0.02, 0.05), per_channel=0.2),
                    ]),
                    #iaa.Invert(0.05, per_channel=True), # invert color channels
                    iaa.Add((-10, 10), per_channel=0.5), # change brightness of images (by -10 to 10 of original value)
                    iaa.Multiply((0.5, 1.5), per_channel=0.5), # change brightness of images (50-150% of original value)
                    iaa.ContrastNormalization((0.5, 2.0), per_channel=0.5), # improve or worsen the contrast
                    #iaa.Grayscale(alpha=(0.0, 1.0)),
                    #sometimes(iaa.ElasticTransformation(alpha=(0.5, 3.5), sigma=0.25)), # move pixels locally around (with random strengths)
                    #sometimes(iaa.PiecewiseAffine(scale=(0.01, 0.05))) # sometimes move parts of the image around
                ],
                random_order=True
            )
        ],
        random_order=True
    )
    return aug_pipe 
開發者ID:penny4860,項目名稱:tf2-eager-yolo3,代碼行數:63,代碼來源:augment.py


注:本文中的imgaug.augmenters.Emboss方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。