當前位置: 首頁>>代碼示例>>Python>>正文


Python augmenters.CoarseDropout方法代碼示例

本文整理匯總了Python中imgaug.augmenters.CoarseDropout方法的典型用法代碼示例。如果您正苦於以下問題:Python augmenters.CoarseDropout方法的具體用法?Python augmenters.CoarseDropout怎麽用?Python augmenters.CoarseDropout使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在imgaug.augmenters的用法示例。


在下文中一共展示了augmenters.CoarseDropout方法的13個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: chapter_augmenters_coarsedropout

# 需要導入模塊: from imgaug import augmenters [as 別名]
# 或者: from imgaug.augmenters import CoarseDropout [as 別名]
def chapter_augmenters_coarsedropout():
    aug = iaa.CoarseDropout(0.02, size_percent=0.5)
    run_and_save_augseq(
        "coarsedropout.jpg", aug,
        [ia.quokka(size=(128, 128)) for _ in range(8)], cols=4, rows=2,
        quality=75
    )

    aug = iaa.CoarseDropout((0.0, 0.05), size_percent=(0.02, 0.25))
    run_and_save_augseq(
        "coarsedropout_both_uniform.jpg", aug,
        [ia.quokka(size=(128, 128)) for _ in range(8)], cols=4, rows=2,
        quality=75,
        seed=2
    )

    aug = iaa.CoarseDropout(0.02, size_percent=0.15, per_channel=0.5)
    run_and_save_augseq(
        "coarsedropout_per_channel.jpg", aug,
        [ia.quokka(size=(128, 128)) for _ in range(8)], cols=4, rows=2,
        quality=75,
        seed=2
    ) 
開發者ID:JoshuaPiinRueyPan,項目名稱:ViolenceDetection,代碼行數:25,代碼來源:generate_documentation_images.py

示例2: example_multicore_augmentation

# 需要導入模塊: from imgaug import augmenters [as 別名]
# 或者: from imgaug.augmenters import CoarseDropout [as 別名]
def example_multicore_augmentation():
    print("Example: Multicore Augmentation")
    import skimage.data
    import imgaug as ia
    import imgaug.augmenters as iaa
    from imgaug.augmentables.batches import UnnormalizedBatch

    # Number of batches and batch size for this example
    nb_batches = 10
    batch_size = 32

    # Example augmentation sequence to run in the background
    augseq = iaa.Sequential([
        iaa.Fliplr(0.5),
        iaa.CoarseDropout(p=0.1, size_percent=0.1)
    ])

    # For simplicity, we use the same image here many times
    astronaut = skimage.data.astronaut()
    astronaut = ia.imresize_single_image(astronaut, (64, 64))

    # Make batches out of the example image (here: 10 batches, each 32 times
    # the example image)
    batches = []
    for _ in range(nb_batches):
        batches.append(UnnormalizedBatch(images=[astronaut] * batch_size))

    # Show the augmented images.
    # Note that augment_batches() returns a generator.
    for images_aug in augseq.augment_batches(batches, background=True):
        ia.imshow(ia.draw_grid(images_aug.images_aug, cols=8)) 
開發者ID:aleju,項目名稱:imgaug,代碼行數:33,代碼來源:check_readme_examples.py

示例3: salt

# 需要導入模塊: from imgaug import augmenters [as 別名]
# 或者: from imgaug.augmenters import CoarseDropout [as 別名]
def salt(image, prob, keys):
    """ Adding salt noise """
    r = random.uniform(1, 5) * 0.05
    aug = iaa.Sequential([iaa.Dropout(p=(0, r)), iaa.CoarseDropout(p=0.001, size_percent=0.01),
                          iaa.Salt(0.001), iaa.AdditiveGaussianNoise(scale=0.1 * 255)])
    aug.add(iaa.Multiply(random.uniform(0.25, 1.5)))
    x = random.randrange(-10, 10) * .01
    y = random.randrange(-10, 10) * .01
    aug.add(iaa.Affine(scale=random.uniform(.7, 1.1), translate_percent={"x": x, "y": y}, cval=(0, 255)))

    seq_det = aug.to_deterministic()

    image_aug = seq_det.augment_images([image])[0]

    keys = ia.KeypointsOnImage([ia.Keypoint(x=keys[0], y=keys[1]),
                                ia.Keypoint(x=keys[2], y=keys[3]),
                                ia.Keypoint(x=keys[4], y=keys[5]),
                                ia.Keypoint(x=keys[6], y=keys[7]),
                                ia.Keypoint(x=keys[8], y=keys[9])], shape=image.shape)

    keys_aug = seq_det.augment_keypoints([keys])[0]
    k = keys_aug.keypoints
    output = [k[0].x, k[0].y, k[1].x, k[1].y, k[2].x, k[2].y, k[3].x, k[3].y, k[4].x, k[4].y]

    index = 0
    for i in range(0, len(prob)):
        output[index] = output[index] * prob[i]
        output[index + 1] = output[index + 1] * prob[i]
        index = index + 2
    output = np.array(output)
    return image_aug, output 
開發者ID:MahmudulAlam,項目名稱:Unified-Gesture-and-Fingertip-Detection,代碼行數:33,代碼來源:augmentation.py

示例4: example_background_augment_batches

# 需要導入模塊: from imgaug import augmenters [as 別名]
# 或者: from imgaug.augmenters import CoarseDropout [as 別名]
def example_background_augment_batches():
    print("Example: Background Augmentation via augment_batches()")
    import imgaug as ia
    from imgaug import augmenters as iaa
    import numpy as np
    from skimage import data

    # Number of batches and batch size for this example
    nb_batches = 10
    batch_size = 32

    # Example augmentation sequence to run in the background
    augseq = iaa.Sequential([
        iaa.Fliplr(0.5),
        iaa.CoarseDropout(p=0.1, size_percent=0.1)
    ])

    # For simplicity, we use the same image here many times
    astronaut = data.astronaut()
    astronaut = ia.imresize_single_image(astronaut, (64, 64))

    # Make batches out of the example image (here: 10 batches, each 32 times
    # the example image)
    batches = []
    for _ in range(nb_batches):
        batches.append(
            np.array(
                [astronaut for _ in range(batch_size)],
                dtype=np.uint8
            )
        )

    # Show the augmented images.
    # Note that augment_batches() returns a generator.
    for images_aug in augseq.augment_batches(batches, background=True):
        misc.imshow(ia.draw_grid(images_aug, cols=8)) 
開發者ID:JoshuaPiinRueyPan,項目名稱:ViolenceDetection,代碼行數:38,代碼來源:test_readme_examples.py

示例5: _create_augment_pipeline

# 需要導入模塊: from imgaug import augmenters [as 別名]
# 或者: from imgaug.augmenters import CoarseDropout [as 別名]
def _create_augment_pipeline():
    from imgaug import augmenters as iaa
    
    ### augmentors by https://github.com/aleju/imgaug
    sometimes = lambda aug: iaa.Sometimes(0.5, aug)

    # Define our sequence of augmentation steps that will be applied to every image
    # All augmenters with per_channel=0.5 will sample one value _per image_
    # in 50% of all cases. In all other cases they will sample new values
    # _per channel_.
    aug_pipe = iaa.Sequential(
        [
            # apply the following augmenters to most images
            #iaa.Fliplr(0.5), # horizontally flip 50% of all images
            #iaa.Flipud(0.2), # vertically flip 20% of all images
            #sometimes(iaa.Crop(percent=(0, 0.1))), # crop images by 0-10% of their height/width
            sometimes(iaa.Affine(
                #scale={"x": (0.8, 1.2), "y": (0.8, 1.2)}, # scale images to 80-120% of their size, individually per axis
                #translate_percent={"x": (-0.2, 0.2), "y": (-0.2, 0.2)}, # translate by -20 to +20 percent (per axis)
                #rotate=(-5, 5), # rotate by -45 to +45 degrees
                #shear=(-5, 5), # shear by -16 to +16 degrees
                #order=[0, 1], # use nearest neighbour or bilinear interpolation (fast)
                #cval=(0, 255), # if mode is constant, use a cval between 0 and 255
                #mode=ia.ALL # use any of scikit-image's warping modes (see 2nd image from the top for examples)
            )),
            # execute 0 to 5 of the following (less important) augmenters per image
            # don't execute all of them, as that would often be way too strong
            iaa.SomeOf((0, 5),
                [
                    #sometimes(iaa.Superpixels(p_replace=(0, 1.0), n_segments=(20, 200))), # convert images into their superpixel representation
                    iaa.OneOf([
                        iaa.GaussianBlur((0, 3.0)), # blur images with a sigma between 0 and 3.0
                        iaa.AverageBlur(k=(2, 7)), # blur image using local means with kernel sizes between 2 and 7
                        iaa.MedianBlur(k=(3, 11)), # blur image using local medians with kernel sizes between 2 and 7
                    ]),
                    iaa.Sharpen(alpha=(0, 1.0), lightness=(0.75, 1.5)), # sharpen images
                    #iaa.Emboss(alpha=(0, 1.0), strength=(0, 2.0)), # emboss images
                    # search either for all edges or for directed edges
                    #sometimes(iaa.OneOf([
                    #    iaa.EdgeDetect(alpha=(0, 0.7)),
                    #    iaa.DirectedEdgeDetect(alpha=(0, 0.7), direction=(0.0, 1.0)),
                    #])),
                    iaa.AdditiveGaussianNoise(loc=0, scale=(0.0, 0.05*255), per_channel=0.5), # add gaussian noise to images
                    iaa.OneOf([
                        iaa.Dropout((0.01, 0.1), per_channel=0.5), # randomly remove up to 10% of the pixels
                        #iaa.CoarseDropout((0.03, 0.15), size_percent=(0.02, 0.05), per_channel=0.2),
                    ]),
                    #iaa.Invert(0.05, per_channel=True), # invert color channels
                    iaa.Add((-10, 10), per_channel=0.5), # change brightness of images (by -10 to 10 of original value)
                    iaa.Multiply((0.5, 1.5), per_channel=0.5), # change brightness of images (50-150% of original value)
                    iaa.ContrastNormalization((0.5, 2.0), per_channel=0.5), # improve or worsen the contrast
                    #iaa.Grayscale(alpha=(0.0, 1.0)),
                    #sometimes(iaa.ElasticTransformation(alpha=(0.5, 3.5), sigma=0.25)), # move pixels locally around (with random strengths)
                    #sometimes(iaa.PiecewiseAffine(scale=(0.01, 0.05))) # sometimes move parts of the image around
                ],
                random_order=True
            )
        ],
        random_order=True
    )
    return aug_pipe 
開發者ID:penny4860,項目名稱:tf2-eager-yolo3,代碼行數:63,代碼來源:augment.py

示例6: medium

# 需要導入模塊: from imgaug import augmenters [as 別名]
# 或者: from imgaug.augmenters import CoarseDropout [as 別名]
def medium(image_iteration):

    iteration = image_iteration/(120*1.5)
    frequency_factor = 0.05 + float(iteration)/1000000.0
    color_factor = float(iteration)/1000000.0
    dropout_factor = 0.198667 + (0.03856658 - 0.198667) / (1 + (iteration / 196416.6) ** 1.863486)

    blur_factor = 0.5 + (0.5*iteration/100000.0)

    add_factor = 10 + 10*iteration/150000.0

    multiply_factor_pos = 1 + (2.5*iteration/500000.0)
    multiply_factor_neg = 1 - (0.91 * iteration / 500000.0)

    contrast_factor_pos = 1 + (0.5*iteration/500000.0)
    contrast_factor_neg = 1 - (0.5 * iteration / 500000.0)


    #print 'Augment Status ',frequency_factor,color_factor,dropout_factor,blur_factor,add_factor,\
    #    multiply_factor_pos,multiply_factor_neg,contrast_factor_pos,contrast_factor_neg


    augmenter = iaa.Sequential([

        iaa.Sometimes(frequency_factor, iaa.GaussianBlur((0, blur_factor))),
        # blur images with a sigma between 0 and 1.5
        iaa.Sometimes(frequency_factor, iaa.AdditiveGaussianNoise(loc=0, scale=(0.0,dropout_factor ),
                                                                  per_channel=color_factor)),
        # add gaussian noise to images
        iaa.Sometimes(frequency_factor, iaa.CoarseDropout((0.0, dropout_factor), size_percent=(
            0.08, 0.2), per_channel=color_factor)),
        # randomly remove up to X% of the pixels
        iaa.Sometimes(frequency_factor, iaa.Dropout((0.0, dropout_factor), per_channel=color_factor)),
        # randomly remove up to X% of the pixels
        iaa.Sometimes(frequency_factor,
                      iaa.Add((-add_factor, add_factor), per_channel=color_factor)),
        # change brightness of images (by -X to Y of original value)
        iaa.Sometimes(frequency_factor,
                      iaa.Multiply((multiply_factor_neg, multiply_factor_pos), per_channel=color_factor)),
        # change brightness of images (X-Y% of original value)
        iaa.Sometimes(frequency_factor, iaa.ContrastNormalization((contrast_factor_neg, contrast_factor_pos),
                                                                       per_channel=color_factor)),
        # improve or worsen the contrast
        iaa.Sometimes(frequency_factor, iaa.Grayscale((0.0, 1))),  # put grayscale

    ],
        random_order=True  # do all of the above in random order
    )

    return augmenter 
開發者ID:felipecode,項目名稱:coiltraine,代碼行數:52,代碼來源:scheduler.py

示例7: soft

# 需要導入模塊: from imgaug import augmenters [as 別名]
# 或者: from imgaug.augmenters import CoarseDropout [as 別名]
def soft(image_iteration):

    iteration = image_iteration/(120*1.5)
    frequency_factor = 0.05 + float(iteration)/1200000.0
    color_factor = float(iteration)/1200000.0
    dropout_factor = 0.198667 + (0.03856658 - 0.198667) / (1 + (iteration / 196416.6) ** 1.863486)

    blur_factor = 0.5 + (0.5*iteration/120000.0)

    add_factor = 10 + 10*iteration/170000.0

    multiply_factor_pos = 1 + (2.5*iteration/800000.0)
    multiply_factor_neg = 1 - (0.91 * iteration / 800000.0)

    contrast_factor_pos = 1 + (0.5*iteration/800000.0)
    contrast_factor_neg = 1 - (0.5 * iteration / 800000.0)


    #print ('iteration',iteration,'Augment Status ',frequency_factor,color_factor,dropout_factor,blur_factor,add_factor,
    #    multiply_factor_pos,multiply_factor_neg,contrast_factor_pos,contrast_factor_neg)


    augmenter = iaa.Sequential([

        iaa.Sometimes(frequency_factor, iaa.GaussianBlur((0, blur_factor))),
        # blur images with a sigma between 0 and 1.5
        iaa.Sometimes(frequency_factor, iaa.AdditiveGaussianNoise(loc=0, scale=(0.0,dropout_factor ),
                                                                  per_channel=color_factor)),
        # add gaussian noise to images
        iaa.Sometimes(frequency_factor, iaa.CoarseDropout((0.0, dropout_factor), size_percent=(
            0.08, 0.2), per_channel=color_factor)),
        # randomly remove up to X% of the pixels
        iaa.Sometimes(frequency_factor, iaa.Dropout((0.0, dropout_factor), per_channel=color_factor)),
        # randomly remove up to X% of the pixels
        iaa.Sometimes(frequency_factor,
                      iaa.Add((-add_factor, add_factor), per_channel=color_factor)),
        # change brightness of images (by -X to Y of original value)
        iaa.Sometimes(frequency_factor,
                      iaa.Multiply((multiply_factor_neg, multiply_factor_pos), per_channel=color_factor)),
        # change brightness of images (X-Y% of original value)
        iaa.Sometimes(frequency_factor, iaa.ContrastNormalization((contrast_factor_neg, contrast_factor_pos),
                                                                       per_channel=color_factor)),
        # improve or worsen the contrast
        iaa.Sometimes(frequency_factor, iaa.Grayscale((0.0, 1))),  # put grayscale

    ],
        random_order=True  # do all of the above in random order
    )

    return augmenter 
開發者ID:felipecode,項目名稱:coiltraine,代碼行數:52,代碼來源:scheduler.py

示例8: high

# 需要導入模塊: from imgaug import augmenters [as 別名]
# 或者: from imgaug.augmenters import CoarseDropout [as 別名]
def high(image_iteration):

    iteration = image_iteration/(120*1.5)
    frequency_factor = 0.05 + float(iteration)/800000.0
    color_factor = float(iteration)/800000.0
    dropout_factor = 0.198667 + (0.03856658 - 0.198667) / (1 + (iteration / 196416.6) ** 1.863486)

    blur_factor = 0.5 + (0.5*iteration/80000.0)

    add_factor = 10 + 10*iteration/120000.0

    multiply_factor_pos = 1 + (2.5*iteration/350000.0)
    multiply_factor_neg = 1 - (0.91 * iteration / 400000.0)

    contrast_factor_pos = 1 + (0.5*iteration/350000.0)
    contrast_factor_neg = 1 - (0.5 * iteration / 400000.0)


    #print ('iteration',iteration,'Augment Status ',frequency_factor,color_factor,dropout_factor,blur_factor,add_factor,
    #    multiply_factor_pos,multiply_factor_neg,contrast_factor_pos,contrast_factor_neg)


    augmenter = iaa.Sequential([

        iaa.Sometimes(frequency_factor, iaa.GaussianBlur((0, blur_factor))),
        # blur images with a sigma between 0 and 1.5
        iaa.Sometimes(frequency_factor, iaa.AdditiveGaussianNoise(loc=0, scale=(0.0,dropout_factor ),
                                                                  per_channel=color_factor)),
        # add gaussian noise to images
        iaa.Sometimes(frequency_factor, iaa.CoarseDropout((0.0, dropout_factor), size_percent=(
            0.08, 0.2), per_channel=color_factor)),
        # randomly remove up to X% of the pixels
        iaa.Sometimes(frequency_factor, iaa.Dropout((0.0, dropout_factor), per_channel=color_factor)),
        # randomly remove up to X% of the pixels
        iaa.Sometimes(frequency_factor,
                      iaa.Add((-add_factor, add_factor), per_channel=color_factor)),
        # change brightness of images (by -X to Y of original value)
        iaa.Sometimes(frequency_factor,
                      iaa.Multiply((multiply_factor_neg, multiply_factor_pos), per_channel=color_factor)),
        # change brightness of images (X-Y% of original value)
        iaa.Sometimes(frequency_factor, iaa.ContrastNormalization((contrast_factor_neg, contrast_factor_pos),
                                                                       per_channel=color_factor)),
        # improve or worsen the contrast
        iaa.Sometimes(frequency_factor, iaa.Grayscale((0.0, 1))),  # put grayscale

    ],
        random_order=True  # do all of the above in random order
    )

    return augmenter 
開發者ID:felipecode,項目名稱:coiltraine,代碼行數:52,代碼來源:scheduler.py

示例9: medium_harder

# 需要導入模塊: from imgaug import augmenters [as 別名]
# 或者: from imgaug.augmenters import CoarseDropout [as 別名]
def medium_harder(image_iteration):


    iteration = image_iteration / 120
    frequency_factor = 0.05 + float(iteration)/1000000.0
    color_factor = float(iteration)/1000000.0
    dropout_factor = 0.198667 + (0.03856658 - 0.198667) / (1 + (iteration / 196416.6) ** 1.863486)

    blur_factor = 0.5 + (0.5*iteration/100000.0)

    add_factor = 10 + 10*iteration/150000.0

    multiply_factor_pos = 1 + (2.5*iteration/500000.0)
    multiply_factor_neg = 1 - (0.91 * iteration / 500000.0)

    contrast_factor_pos = 1 + (0.5*iteration/500000.0)
    contrast_factor_neg = 1 - (0.5 * iteration / 500000.0)


    #print 'Augment Status ',frequency_factor,color_factor,dropout_factor,blur_factor,add_factor,\
    #    multiply_factor_pos,multiply_factor_neg,contrast_factor_pos,contrast_factor_neg


    augmenter = iaa.Sequential([

        iaa.Sometimes(frequency_factor, iaa.GaussianBlur((0, blur_factor))),
        # blur images with a sigma between 0 and 1.5
        iaa.Sometimes(frequency_factor, iaa.AdditiveGaussianNoise(loc=0, scale=(0.0,dropout_factor ),
                                                                  per_channel=color_factor)),
        # add gaussian noise to images
        iaa.Sometimes(frequency_factor, iaa.CoarseDropout((0.0, dropout_factor), size_percent=(
            0.08, 0.2), per_channel=color_factor)),
        # randomly remove up to X% of the pixels
        iaa.Sometimes(frequency_factor, iaa.Dropout((0.0, dropout_factor), per_channel=color_factor)),
        # randomly remove up to X% of the pixels
        iaa.Sometimes(frequency_factor,
                      iaa.Add((-add_factor, add_factor), per_channel=color_factor)),
        # change brightness of images (by -X to Y of original value)
        iaa.Sometimes(frequency_factor,
                      iaa.Multiply((multiply_factor_neg, multiply_factor_pos), per_channel=color_factor)),
        # change brightness of images (X-Y% of original value)
        iaa.Sometimes(frequency_factor, iaa.ContrastNormalization((contrast_factor_neg, contrast_factor_pos),
                                                                       per_channel=color_factor)),
        # improve or worsen the contrast
        iaa.Sometimes(frequency_factor, iaa.Grayscale((0.0, 1))),  # put grayscale

    ],
        random_order=True  # do all of the above in random order
    )

    return augmenter 
開發者ID:felipecode,項目名稱:coiltraine,代碼行數:53,代碼來源:scheduler.py

示例10: hard_harder

# 需要導入模塊: from imgaug import augmenters [as 別名]
# 或者: from imgaug.augmenters import CoarseDropout [as 別名]
def hard_harder(image_iteration):


    iteration = image_iteration / 120
    frequency_factor = min(0.05 + float(iteration)/200000.0, 1.0)
    color_factor = float(iteration)/1000000.0
    dropout_factor = 0.198667 + (0.03856658 - 0.198667) / (1 + (iteration / 196416.6) ** 1.863486)

    blur_factor = 0.5 + (0.5*iteration/100000.0)

    add_factor = 10 + 10*iteration/100000.0

    multiply_factor_pos = 1 + (2.5*iteration/200000.0)
    multiply_factor_neg = 1 - (0.91 * iteration / 500000.0)

    contrast_factor_pos = 1 + (0.5*iteration/500000.0)
    contrast_factor_neg = 1 - (0.5 * iteration / 500000.0)


    #print 'Augment Status ',frequency_factor,color_factor,dropout_factor,blur_factor,add_factor,\
    #    multiply_factor_pos,multiply_factor_neg,contrast_factor_pos,contrast_factor_neg


    augmenter = iaa.Sequential([

        iaa.Sometimes(frequency_factor, iaa.GaussianBlur((0, blur_factor))),
        # blur images with a sigma between 0 and 1.5
        iaa.Sometimes(frequency_factor, iaa.AdditiveGaussianNoise(loc=0, scale=(0.0,dropout_factor ),
                                                                  per_channel=color_factor)),
        # add gaussian noise to images
        iaa.Sometimes(frequency_factor, iaa.CoarseDropout((0.0, dropout_factor), size_percent=(
            0.08, 0.2), per_channel=color_factor)),
        # randomly remove up to X% of the pixels
        iaa.Sometimes(frequency_factor, iaa.Dropout((0.0, dropout_factor), per_channel=color_factor)),
        # randomly remove up to X% of the pixels
        iaa.Sometimes(frequency_factor,
                      iaa.Add((-add_factor, add_factor), per_channel=color_factor)),
        # change brightness of images (by -X to Y of original value)
        iaa.Sometimes(frequency_factor,
                      iaa.Multiply((multiply_factor_neg, multiply_factor_pos), per_channel=color_factor)),
        # change brightness of images (X-Y% of original value)
        iaa.Sometimes(frequency_factor, iaa.ContrastNormalization((contrast_factor_neg, contrast_factor_pos),
                                                                       per_channel=color_factor)),
        # improve or worsen the contrast
        iaa.Sometimes(frequency_factor, iaa.Grayscale((0.0, 1))),  # put grayscale

    ],
        random_order=True  # do all of the above in random order
    )

    return augmenter 
開發者ID:felipecode,項目名稱:coiltraine,代碼行數:53,代碼來源:scheduler.py

示例11: build_augmentation_pipeline

# 需要導入模塊: from imgaug import augmenters [as 別名]
# 或者: from imgaug.augmenters import CoarseDropout [as 別名]
def build_augmentation_pipeline(self, height=None, width=None, apply_prob=0.5):
        sometimes = lambda aug: iaa.Sometimes(apply_prob, aug)
        pipeline = iaa.Sequential(random_order=False)
        cfg = self.cfg
        if cfg.get("fliplr", False):
            opt = cfg.get("fliplr", False)
            if type(opt) == int:
                pipeline.add(sometimes(iaa.Fliplr(opt)))
            else:
                pipeline.add(sometimes(iaa.Fliplr(0.5)))
        if cfg.get("rotation", False):
            opt = cfg.get("rotation", False)
            if type(opt) == int:
                pipeline.add(sometimes(iaa.Affine(rotate=(-opt, opt))))
            else:
                pipeline.add(sometimes(iaa.Affine(rotate=(-10, 10))))
        if cfg.get("hist_eq", False):
            pipeline.add(sometimes(iaa.AllChannelsHistogramEqualization()))
        if cfg.get("motion_blur", False):
            opts = cfg.get("motion_blur", False)
            if type(opts) == list:
                opts = dict(opts)
                pipeline.add(sometimes(iaa.MotionBlur(**opts)))
            else:
                pipeline.add(sometimes(iaa.MotionBlur(k=7, angle=(-90, 90))))
        if cfg.get("covering", False):
            pipeline.add(
                sometimes(iaa.CoarseDropout((0, 0.02), size_percent=(0.01, 0.05)))
            )  # , per_channel=0.5)))
        if cfg.get("elastic_transform", False):
            pipeline.add(sometimes(iaa.ElasticTransformation(sigma=5)))
        if cfg.get("gaussian_noise", False):
            opt = cfg.get("gaussian_noise", False)
            if type(opt) == int or type(opt) == float:
                pipeline.add(
                    sometimes(
                        iaa.AdditiveGaussianNoise(
                            loc=0, scale=(0.0, opt), per_channel=0.5
                        )
                    )
                )
            else:
                pipeline.add(
                    sometimes(
                        iaa.AdditiveGaussianNoise(
                            loc=0, scale=(0.0, 0.05 * 255), per_channel=0.5
                        )
                    )
                )
        if height is not None and width is not None:
            pipeline.add(
                iaa.Sometimes(
                    cfg.cropratio, iaa.CropAndPad(percent=(-0.3, 0.1), keep_size=False)
                )
            )
            pipeline.add(iaa.Resize({"height": height, "width": width}))
        return pipeline 
開發者ID:DeepLabCut,項目名稱:DeepLabCut,代碼行數:59,代碼來源:pose_multianimal_imgaug.py

示例12: get_augmentations

# 需要導入模塊: from imgaug import augmenters [as 別名]
# 或者: from imgaug.augmenters import CoarseDropout [as 別名]
def get_augmentations():
    # applies the given augmenter in 50% of all cases,
    sometimes = lambda aug: iaa.Sometimes(0.5, aug)

    # Define our sequence of augmentation steps that will be applied to every image
    seq = iaa.Sequential([
            # execute 0 to 5 of the following (less important) augmenters per image
            iaa.SomeOf((0, 5),
                [
                    iaa.OneOf([
                        iaa.GaussianBlur((0, 3.0)),
                        iaa.AverageBlur(k=(2, 7)), 
                        iaa.MedianBlur(k=(3, 11)),
                    ]),
                    iaa.Sharpen(alpha=(0, 1.0), lightness=(0.75, 1.5)),
                    iaa.Emboss(alpha=(0, 1.0), strength=(0, 2.0)), 
                    # search either for all edges or for directed edges,
                    # blend the result with the original image using a blobby mask
                    iaa.SimplexNoiseAlpha(iaa.OneOf([
                        iaa.EdgeDetect(alpha=(0.5, 1.0)),
                        iaa.DirectedEdgeDetect(alpha=(0.5, 1.0), direction=(0.0, 1.0)),
                    ])),
                    iaa.AdditiveGaussianNoise(loc=0, scale=(0.0, 0.05*255), per_channel=0.5),
                    iaa.OneOf([
                        iaa.Dropout((0.01, 0.1), per_channel=0.5), # randomly remove up to 10% of the pixels
                        iaa.CoarseDropout((0.03, 0.15), size_percent=(0.02, 0.05), per_channel=0.2),
                    ]),
                    iaa.Add((-10, 10), per_channel=0.5), # change brightness of images (by -10 to 10 of original value)
                    iaa.AddToHueAndSaturation((-20, 20)), # change hue and saturation
                    # either change the brightness of the whole image (sometimes
                    # per channel) or change the brightness of subareas
                    iaa.OneOf([
                        iaa.Multiply((0.5, 1.5), per_channel=0.5),
                        iaa.FrequencyNoiseAlpha(
                            exponent=(-4, 0),
                            first=iaa.Multiply((0.5, 1.5), per_channel=True),
                            second=iaa.ContrastNormalization((0.5, 2.0))
                        )
                    ]),
                    iaa.ContrastNormalization((0.5, 2.0), per_channel=0.5), # improve or worsen the contrast
                    sometimes(iaa.ElasticTransformation(alpha=(0.5, 3.5), sigma=0.25)), # move pixels locally around (with random strengths)
                ],
                random_order=True
            )
        ],
        random_order=True
    )
    return seq

### data transforms 
開發者ID:xl-sr,項目名稱:CAL,代碼行數:52,代碼來源:dataloader.py

示例13: main

# 需要導入模塊: from imgaug import augmenters [as 別名]
# 或者: from imgaug.augmenters import CoarseDropout [as 別名]
def main():
    augseq = iaa.Sequential([
        iaa.Fliplr(0.5),
        iaa.CoarseDropout(p=0.1, size_percent=0.1)
    ])

    print("------------------")
    print("augseq.augment_batches(batches, background=True)")
    print("------------------")
    batches = list(load_images())
    batches_aug = augseq.augment_batches(batches, background=True)
    images_aug = []
    keypoints_aug = []
    for batch_aug in batches_aug:
        images_aug.append(batch_aug.images_aug)
        keypoints_aug.append(batch_aug.keypoints_aug)
    misc.imshow(draw_grid(images_aug, keypoints_aug))

    print("------------------")
    print("augseq.augment_batches(batches, background=True) -> only images")
    print("------------------")
    batches = list(load_images())
    batches = [batch.images for batch in batches]
    batches_aug = augseq.augment_batches(batches, background=True)
    images_aug = []
    keypoints_aug = None
    for batch_aug in batches_aug:
        images_aug.append(batch_aug)
    misc.imshow(draw_grid(images_aug, keypoints_aug))

    print("------------------")
    print("BackgroundAugmenter")
    print("------------------")
    batch_loader = ia.BatchLoader(load_images)
    bg_augmenter = ia.BackgroundAugmenter(batch_loader, augseq)
    images_aug = []
    keypoints_aug = []
    while True:
        print("Next batch...")
        batch = bg_augmenter.get_batch()
        if batch is None:
            print("Finished.")
            break
        images_aug.append(batch.images_aug)
        keypoints_aug.append(batch.keypoints_aug)
    misc.imshow(draw_grid(images_aug, keypoints_aug)) 
開發者ID:JoshuaPiinRueyPan,項目名稱:ViolenceDetection,代碼行數:48,代碼來源:check_background_augmentation.py


注:本文中的imgaug.augmenters.CoarseDropout方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。