當前位置: 首頁>>代碼示例>>Python>>正文


Python over_sampling.RandomOverSampler方法代碼示例

本文整理匯總了Python中imblearn.over_sampling.RandomOverSampler方法的典型用法代碼示例。如果您正苦於以下問題:Python over_sampling.RandomOverSampler方法的具體用法?Python over_sampling.RandomOverSampler怎麽用?Python over_sampling.RandomOverSampler使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在imblearn.over_sampling的用法示例。


在下文中一共展示了over_sampling.RandomOverSampler方法的8個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: transform

# 需要導入模塊: from imblearn import over_sampling [as 別名]
# 或者: from imblearn.over_sampling import RandomOverSampler [as 別名]
def transform(self, X, y=None):
        # TODO how do we validate this happens before train/test split? Or do we need to? Can we implement it in the
        # TODO      simple trainer in the correct order and leave this to advanced users?

        # Extract predicted column
        y = np.squeeze(X[[self.predicted_column]])

        # Copy the dataframe without the predicted column
        temp_dataframe = X.drop([self.predicted_column], axis=1)

        # Initialize and fit the under sampler
        over_sampler = RandomOverSampler(random_state=self.random_seed)
        x_over_sampled, y_over_sampled = over_sampler.fit_sample(temp_dataframe, y)

        # Build the resulting under sampled dataframe
        result = pd.DataFrame(x_over_sampled)

        # Restore the column names
        result.columns = temp_dataframe.columns

        # Restore the y values
        y_over_sampled = pd.Series(y_over_sampled)
        result[self.predicted_column] = y_over_sampled

        return result 
開發者ID:HealthCatalyst,項目名稱:healthcareai-py,代碼行數:27,代碼來源:transformers.py

示例2: create_sampler

# 需要導入模塊: from imblearn import over_sampling [as 別名]
# 或者: from imblearn.over_sampling import RandomOverSampler [as 別名]
def create_sampler(sampler_name, random_state=None):

    if sampler_name is None or sampler_name == 'None':
        return None
    if sampler_name.lower() == 'randomundersampler':
        return RandomUnderSampler(random_state=random_state)
    if sampler_name.lower() == 'tomeklinks':
        return TomekLinks(random_state=random_state)
    if sampler_name.lower() == 'enn':
        return EditedNearestNeighbours(random_state=random_state)
    if sampler_name.lower() == 'ncl':
        return NeighbourhoodCleaningRule(random_state=random_state)
    if sampler_name.lower() == 'randomoversampler':
        return RandomOverSampler(random_state=random_state)
    if sampler_name.lower() == 'smote':
        return SMOTE(random_state=random_state)
    if sampler_name.lower() == 'smotetomek':
        return SMOTETomek(random_state=random_state)
    if sampler_name.lower() == 'smoteenn':
        return SMOTEENN(random_state=random_state)
    else:
        raise ValueError('Unsupported value \'%s\' for sampler' % sampler_name) 
開發者ID:melqkiades,項目名稱:yelp,代碼行數:24,代碼來源:sampler_factory.py

示例3: test_random_oversampling_limit_case

# 需要導入模塊: from imblearn import over_sampling [as 別名]
# 或者: from imblearn.over_sampling import RandomOverSampler [as 別名]
def test_random_oversampling_limit_case(plot=False):
    """Execute k-means SMOTE with parameters equivalent to random oversampling"""
    kmeans_smote = KMeansSMOTE(
        random_state=RND_SEED,
        imbalance_ratio_threshold=float('Inf'),
        kmeans_args={
            'n_clusters': 1
        },
        smote_args={
            'k_neighbors': 0
        }
    )
    random_oversampler = RandomOverSampler(random_state=RND_SEED)
    X_resampled, y_resampled = kmeans_smote.fit_sample(X, Y)
    X_resampled_random_oversampler, y_resampled_random_oversampler = random_oversampler.fit_sample(
        X, Y)

    if plot:
        plot_resampled(X, X_resampled, Y, y_resampled,
                       'random_oversampling_limit_case_test_kmeans_smote')
        plot_resampled(X, X_resampled_random_oversampler, Y, y_resampled_random_oversampler,
                       'random_oversampling_limit_case_test_random_oversampling')

    assert_array_equal(X_resampled, X_resampled_random_oversampler)
    assert_array_equal(y_resampled, y_resampled_random_oversampler) 
開發者ID:felix-last,項目名稱:kmeans_smote,代碼行數:27,代碼來源:test_kmeans_smote.py

示例4: __init__

# 需要導入模塊: from imblearn import over_sampling [as 別名]
# 或者: from imblearn.over_sampling import RandomOverSampler [as 別名]
def __init__(self):
        super(UpSampling, self).__init__(RandomOverSampler(random_state=RANDOM_SEED[BALANCE_UP_SAMPLING]),
                                         BALANCE_UP_SAMPLING) 
開發者ID:salan668,項目名稱:FAE,代碼行數:5,代碼來源:DataBalance.py

示例5: __init__

# 需要導入模塊: from imblearn import over_sampling [as 別名]
# 或者: from imblearn.over_sampling import RandomOverSampler [as 別名]
def __init__(self, operator = None, sampling_strategy='auto', random_state=None):
        if operator is None:
            raise ValueError("Operator is a required argument.")

        self._hyperparams = {
            'sampling_strategy': sampling_strategy,
            'random_state': random_state}

        resampler_instance = OrigModel(**self._hyperparams)
        super(RandomOverSamplerImpl, self).__init__(
            operator = operator,
            resampler = resampler_instance) 
開發者ID:IBM,項目名稱:lale,代碼行數:14,代碼來源:random_over_sampler.py

示例6: over_sample_random

# 需要導入模塊: from imblearn import over_sampling [as 別名]
# 或者: from imblearn.over_sampling import RandomOverSampler [as 別名]
def over_sample_random(train_inputs, train_targets):
    sampler = RandomOverSampler(random_state=32)
    train_inputs, train_targets = _sampler_helper(sampler, train_inputs, train_targets)
    return train_inputs, train_targets 
開發者ID:HunterMcGushion,項目名稱:hyperparameter_hunter,代碼行數:6,代碼來源:imblearn_resampling_example.py

示例7: test_objectmapper_oversampling

# 需要導入模塊: from imblearn import over_sampling [as 別名]
# 或者: from imblearn.over_sampling import RandomOverSampler [as 別名]
def test_objectmapper_oversampling(self):
        import imblearn.over_sampling as os
        df = pdml.ModelFrame([])
        self.assertIs(df.imbalance.over_sampling.ADASYN,
                      os.ADASYN)
        self.assertIs(df.imbalance.over_sampling.RandomOverSampler,
                      os.RandomOverSampler)
        self.assertIs(df.imbalance.over_sampling.SMOTE,
                      os.SMOTE) 
開發者ID:pandas-ml,項目名稱:pandas-ml,代碼行數:11,代碼來源:test_imbalance.py

示例8: resample

# 需要導入模塊: from imblearn import over_sampling [as 別名]
# 或者: from imblearn.over_sampling import RandomOverSampler [as 別名]
def resample(self, X, y, target_size_strategy, seed):
        from imblearn.over_sampling import RandomOverSampler as imblearn_RandomOverSampler
        resampler = imblearn_RandomOverSampler(sampling_strategy=target_size_strategy, random_state=seed)
        return resampler.fit_resample(X, y) 
開發者ID:automl,項目名稱:Auto-PyTorch,代碼行數:6,代碼來源:random.py


注:本文中的imblearn.over_sampling.RandomOverSampler方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。