當前位置: 首頁>>代碼示例>>Python>>正文


Python imageio.mimread方法代碼示例

本文整理匯總了Python中imageio.mimread方法的典型用法代碼示例。如果您正苦於以下問題:Python imageio.mimread方法的具體用法?Python imageio.mimread怎麽用?Python imageio.mimread使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在imageio的用法示例。


在下文中一共展示了imageio.mimread方法的12個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: testreadavi

# 需要導入模塊: import imageio [as 別名]
# 或者: from imageio import mimread [as 別名]
def testreadavi(fn: Path):

    fn = Path(fn).expanduser()

    vid = imageio.mimread(fn)

# %% play video
    ax = figure().gca()
    h = ax.imshow(vid[0])
    t = ax.set_title('')

    for i, I in enumerate(vid):
        h.set_data(I)
        t.set_text(str(i))

        draw()
        pause(0.1) 
開發者ID:scivision,項目名稱:pyimagevideo,代碼行數:19,代碼來源:readAVI_imageio.py

示例2: _setup

# 需要導入模塊: import imageio [as 別名]
# 或者: from imageio import mimread [as 別名]
def _setup(self, *args):
        self.__phases = select_phases(self._args)
        self.__input_path = self._args['input']
        self.__output_path = self._args['output']
        self.__tmp_dir = None
        self.__temp_input_paths = []
        self.__temp_output_paths = []
        self.__tmp_dir = tempfile.mkdtemp()
        Conf.log.debug("Temporay dir is {}".format(self.__tmp_dir))
        imgs = imageio.mimread(self.__input_path)
        Conf.log.info("GIF have {} Frames To Process".format(len(imgs)))
        self.__temp_input_paths = [os.path.join(self.__tmp_dir, "intput_{}.png".format(i))
                                   for i in range(len(imgs))]
        self._args['input'] = self.__temp_input_paths
        self.__temp_output_paths = [os.path.join(self.__tmp_dir, "output_{}.png".format(i))
                                    for i in range(len(imgs))]
        self._args['output'] = self.__temp_output_paths

        for i in zip(imgs, self.__temp_input_paths):
            write_image(cv2.cvtColor(i[0], cv2.COLOR_RGB2BGR), i[1]) 
開發者ID:dreamnettech,項目名稱:dreampower,代碼行數:22,代碼來源:gif.py

示例3: check_shape

# 需要導入模塊: import imageio [as 別名]
# 或者: from imageio import mimread [as 別名]
def check_shape(path, shape=Conf.desired_shape):
    """
    Validate the shape of an image.

    :param image: <RGB> Image to check
    :param shape: <(int,int,int)> Valid shape
    :return: None
    """
    if os.path.splitext(path)[1] != ".gif":
        img_shape = read_image(path).shape
    else:
        img_shape = imageio.mimread(path)[0][:, :, :3].shape

    if img_shape != shape:
        Conf.log.error("{} Image is not 512 x 512, got shape: {}".format(path, img_shape))
        Conf.log.error("You should use one of the rescale options or manually resize the image")
        sys.exit(1) 
開發者ID:dreamnettech,項目名稱:dreampower,代碼行數:19,代碼來源:utils.py

示例4: test_Percept_save

# 需要導入模塊: import imageio [as 別名]
# 或者: from imageio import mimread [as 別名]
def test_Percept_save():
    ndarray = np.arange(256, dtype=np.float32).repeat(31).reshape((-1, 16, 16))
    percept = Percept(ndarray.transpose((2, 0, 1)))

    # Save multiple frames as a gif or movie:
    for fname in ['test.mp4', 'test.avi', 'test.mov', 'test.wmv', 'test.gif']:
        print(fname)
        percept.save(fname)
        npt.assert_equal(os.path.isfile(fname), True)
        # Normalized to [0, 255] with some loss of precision:
        mov = mimread(fname)
        npt.assert_equal(np.min(mov) <= 2, True)
        npt.assert_equal(np.max(mov) >= 250, True)
        os.remove(fname)

    # Cannot save multiple frames image:
    fname = 'test.jpg'
    with pytest.raises(ValueError):
        percept.save(fname)

    # But, can save single frame as image:
    percept = Percept(ndarray[..., :1])
    for fname in ['test.jpg', 'test.png', 'test.tif', 'test.gif']:
        percept.save(fname)
        npt.assert_equal(os.path.isfile(fname), True)
        img = img_as_float(imread(fname))
        npt.assert_almost_equal(np.min(img), 0, decimal=3)
        npt.assert_almost_equal(np.max(img), 1.0, decimal=3)
        os.remove(fname) 
開發者ID:pulse2percept,項目名稱:pulse2percept,代碼行數:31,代碼來源:test_base.py

示例5: generate_test_demos

# 需要導入模塊: import imageio [as 別名]
# 或者: from imageio import mimread [as 別名]
def generate_test_demos(data_generator):
    if not FLAGS.use_noisy_demos:
        n_folders = len(data_generator.demos.keys())
        demos = data_generator.demos
    else:
        n_folders = len(data_generator.noisy_demos.keys())
        demos = data_generator.noisy_demos
    policy_demo_idx = [np.random.choice(n_demo, replace=False, size=FLAGS.test_update_batch_size) \
                        for n_demo in [demos[i]['demoX'].shape[0] for i in xrange(n_folders)]]
    selected_demoO, selected_demoX, selected_demoU = [], [], []
    for i in xrange(n_folders):
        selected_cond = np.array(demos[i]['demoConditions'])[np.arange(len(demos[i]['demoConditions'])) == policy_demo_idx[i]]
        Xs, Us, Os = [], [], []
        for idx in selected_cond:
            if FLAGS.use_noisy_demos:
                demo_gif_dir = data_generator.noisy_demo_gif_dir
            else:
                demo_gif_dir = data_generator.demo_gif_dir
            O = np.array(imageio.mimread(demo_gif_dir + data_generator.gif_prefix + '_%d/cond%d.samp0.gif' % (i, idx)))[:, :, :, :3]
            O = np.transpose(O, [0, 3, 2, 1]) # transpose to mujoco setting for images
            O = O.reshape(FLAGS.T, -1) / 255.0 # normalize
            Os.append(O)
        Xs.append(demos[i]['demoX'][np.arange(demos[i]['demoX'].shape[0]) == policy_demo_idx[i]].squeeze())
        Us.append(demos[i]['demoU'][np.arange(demos[i]['demoU'].shape[0]) == policy_demo_idx[i]].squeeze())
        selected_demoO.append(np.array(Os))
        selected_demoX.append(np.array(Xs))
        selected_demoU.append(np.array(Us))
    print "Finished collecting demos for testing"
    selected_demo = dict(selected_demoX=selected_demoX, selected_demoU=selected_demoU, selected_demoO=selected_demoO)
    data_generator.selected_demo = selected_demo 
開發者ID:tianheyu927,項目名稱:mil,代碼行數:32,代碼來源:main.py

示例6: load_demo

# 需要導入模塊: import imageio [as 別名]
# 或者: from imageio import mimread [as 別名]
def load_demo(task_id, demo_dir, demo_inds):
    demo_info = pickle.load(open(demo_dir+task_id+'.pkl', 'rb'))
    demoX = demo_info['demoX'][demo_inds,:,:]
    demoU = demo_info['demoU'][demo_inds,:,:]
    d1, d2, _ = demoX.shape
    demoX = np.reshape(demoX, [1, d1*d2, -1])
    demoU = np.reshape(demoU, [1, d1*d2, -1])

    # read in demo video
    if CROP:
        demo_gifs = [imageio.mimread(demo_dir+'crop_object_'+task_id+'/cond%d.samp0.gif' % demo_ind) for demo_ind in demo_inds]
    else:
        demo_gifs = [imageio.mimread(demo_dir+'object_'+task_id+'/cond%d.samp0.gif' % demo_ind) for demo_ind in demo_inds]

    return demoX, demoU, demo_gifs, demo_info 
開發者ID:tianheyu927,項目名稱:mil,代碼行數:17,代碼來源:eval_push.py

示例7: test_tiff_multipage_rw

# 需要導入模塊: import imageio [as 別名]
# 或者: from imageio import mimread [as 別名]
def test_tiff_multipage_rw():
    pytest.importorskip('skimage')
    pytest.importorskip('matplotlib')

    with tempfile.TemporaryDirectory() as d:
        d = Path(d).expanduser()

        piv.genimgseries(d)

        ofn = d / 'mp.tif'
        piv.png2tiff(ofn, '[0-9].png')

        y = imageio.mimread(ofn)

    assert len(y) == 10 
開發者ID:scivision,項目名稱:pyimagevideo,代碼行數:17,代碼來源:test_all.py

示例8: _run_benchmark_suite

# 需要導入模塊: import imageio [as 別名]
# 或者: from imageio import mimread [as 別名]
def _run_benchmark_suite(resources_dir: Path):
    # Default reader / imageio imread tests
    default_reader_single_image_results = _run_benchmark(
        resources_dir=resources_dir,
        extensions=["*.png", "*.jpg", "*.bmp"],
        non_aicsimageio_reader=imageio.imread,
    )

    # Default reader / imageio mimread tests
    default_reader_many_image_results = _run_benchmark(
        resources_dir=resources_dir,
        extensions=["*.gif"],
        non_aicsimageio_reader=imageio.mimread,
    )

    # Tiff reader / tifffile imread tests
    tiff_reader_results = _run_benchmark(
        resources_dir=resources_dir,
        extensions=["*.tiff"],
        non_aicsimageio_reader=tifffile.imread,
    )

    # CZI reader / czifile imread tests
    czi_reader_results = _run_benchmark(
        resources_dir=resources_dir,
        extensions=["*.czi"],
        non_aicsimageio_reader=czifile.imread,
    )

    return [
        *default_reader_single_image_results,
        *default_reader_many_image_results,
        *tiff_reader_results,
        *czi_reader_results,
    ] 
開發者ID:AllenCellModeling,項目名稱:aicsimageio,代碼行數:37,代碼來源:benchmark.py

示例9: __getitem__

# 需要導入模塊: import imageio [as 別名]
# 或者: from imageio import mimread [as 別名]
def __getitem__(self, task):
        '''
        We use idx as meaning the task idx
        '''
        task = self.prefix + '_' + str(task)
        traj_idxs = np.random.choice(
            self.demos[task]['demoU'].shape[0],
            size=self.total_num_trajs_per_task,
            replace=False
        )

        # get the states
        U = [self.demos[task]['demoU'][v] for v in traj_idxs]
        U = np.array(U)
        X = [self.demos[task]['demoX'][v] for v in traj_idxs]
        X = np.array(X)
        assert U.shape[2] == self.act_dim
        assert X.shape[2] == self.state_dim

        # get the videos
        vids = []
        for idx in traj_idxs:
            # vid = imageio.mimread(self.vid_paths_dict[task][idx])

            # no need for transposing since I've already saved them
            # with correct ordering of dimensions
            vid = np.load(self.vid_paths_dict[task][idx])

            # we will do this on the GPU
            # .astype(np.float32)
            # vid /= 255.0
            vids.append(vid)
        # vids = np.array(vids)

        return {
            'videos': vids,
            'states': X,
            'actions': U
        } 
開發者ID:KamyarGh,項目名稱:rl_swiss,代碼行數:41,代碼來源:pusher_mil_pytorch_data_loader.py

示例10: compose_gifs_compact

# 需要導入模塊: import imageio [as 別名]
# 或者: from imageio import mimread [as 別名]
def compose_gifs_compact(input_fpathes, output_fpath):
    """Create progressin for first and last frames over time."""
    first_and_last_per_batch_id = []
    for fname in input_fpathes:
        data = imageio.mimread(fname)
        data = np.concatenate([data[0], data[-1]], axis=0)
        first_and_last_per_batch_id.append(data)
    if first_and_last_per_batch_id:
        imageio.mimwrite(output_fpath, first_and_last_per_batch_id) 
開發者ID:facebookresearch,項目名稱:phyre,代碼行數:11,代碼來源:vis.py

示例11: compose_gifs

# 需要導入模塊: import imageio [as 別名]
# 或者: from imageio import mimread [as 別名]
def compose_gifs(input_fpathes, output_fpath):
    """Concatenate and sync all gifs."""
    all_data = []
    for fname in input_fpathes:
        all_data.append(imageio.mimread(fname))
    max_timestamps = max(len(data) for data in all_data)

    def _pad(data):
        return data + [data[-1]] * (max_timestamps - len(data))

    all_data = np.concatenate([_pad(data) for data in all_data], 1)
    imageio.mimwrite(output_fpath, all_data) 
開發者ID:facebookresearch,項目名稱:phyre,代碼行數:14,代碼來源:vis.py

示例12: mimread

# 需要導入模塊: import imageio [as 別名]
# 或者: from imageio import mimread [as 別名]
def mimread(
    uri,
    clip_range: Tuple[int, int] = None,
    expand_dims: bool = True,
    rootpath: Union[str, pathlib.Path] = None,
    **kwargs,
) -> np.ndarray:
    """
    Reads multiple images from the specified file.

    Args:
        uri (str, pathlib.Path, bytes, file): the resource to load the image
          from, e.g. a filename, ``pathlib.Path``, http address or file object,
          see ``imageio.mimread`` docs for more info
        clip_range (Tuple[int, int]): lower and upper interval edges,
          image values outside the interval are clipped to the interval edges
        expand_dims (bool): if True, append channel axis to grayscale images
          rootpath (Union[str, pathlib.Path]): path to the resource with image
          (allows to use relative path)
        rootpath (Union[str, pathlib.Path]): path to the resource with image
            (allows to use relative path)
        **kwargs: extra params for image read

    Returns:
        np.ndarray: image
    """
    if rootpath is not None:
        uri = uri if uri.startswith(rootpath) else os.path.join(rootpath, uri)

    image = np.dstack(imageio.mimread(uri, **kwargs))
    if clip_range is not None:
        image = np.clip(image, *clip_range)

    if expand_dims and len(image.shape) < 3:  # grayscale
        image = np.expand_dims(image, -1)

    return image 
開發者ID:catalyst-team,項目名稱:catalyst,代碼行數:39,代碼來源:image.py


注:本文中的imageio.mimread方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。