當前位置: 首頁>>代碼示例>>Python>>正文


Python imageio.imwrite方法代碼示例

本文整理匯總了Python中imageio.imwrite方法的典型用法代碼示例。如果您正苦於以下問題:Python imageio.imwrite方法的具體用法?Python imageio.imwrite怎麽用?Python imageio.imwrite使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在imageio的用法示例。


在下文中一共展示了imageio.imwrite方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: save_image

# 需要導入模塊: import imageio [as 別名]
# 或者: from imageio import imwrite [as 別名]
def save_image(data, epoch, image_size, batch_size, output_dir, padding=2):
    """ save image """
    data = data.asnumpy().transpose((0, 2, 3, 1))
    datanp = np.clip(
        (data - np.min(data))*(255.0/(np.max(data) - np.min(data))), 0, 255).astype(np.uint8)
    x_dim = min(8, batch_size)
    y_dim = int(math.ceil(float(batch_size) / x_dim))
    height, width = int(image_size + padding), int(image_size + padding)
    grid = np.zeros((height * y_dim + 1 + padding // 2, width *
                     x_dim + 1 + padding // 2, 3), dtype=np.uint8)
    k = 0
    for y in range(y_dim):
        for x in range(x_dim):
            if k >= batch_size:
                break
            start_y = y * height + 1 + padding // 2
            end_y = start_y + height - padding
            start_x = x * width + 1 + padding // 2
            end_x = start_x + width - padding
            np.copyto(grid[start_y:end_y, start_x:end_x, :], datanp[k])
            k += 1
    imageio.imwrite(
        '{}/fake_samples_epoch_{}.png'.format(output_dir, epoch), grid) 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:25,代碼來源:utils.py

示例2: begin_background

# 需要導入模塊: import imageio [as 別名]
# 或者: from imageio import imwrite [as 別名]
def begin_background(self):
        self.queue = Queue()

        def bg_target(queue):
            while True:
                if not queue.empty():
                    filename, tensor = queue.get()
                    if filename is None: break
                    imageio.imwrite(filename, tensor.numpy())
        
        self.process = [
            Process(target=bg_target, args=(self.queue,)) \
            for _ in range(self.n_processes)
        ]
        
        for p in self.process: p.start() 
開發者ID:HolmesShuan,項目名稱:OISR-PyTorch,代碼行數:18,代碼來源:utility.py

示例3: _generate_samples

# 需要導入模塊: import imageio [as 別名]
# 或者: from imageio import imwrite [as 別名]
def _generate_samples(self, samples_path, cover, epoch):
        cover = cover.to(self.device)
        generated, payload, decoded = self._encode_decode(cover)
        samples = generated.size(0)
        for sample in range(samples):
            cover_path = os.path.join(samples_path, '{}.cover.png'.format(sample))
            sample_name = '{}.generated-{:2d}.png'.format(sample, epoch)
            sample_path = os.path.join(samples_path, sample_name)

            image = (cover[sample].permute(1, 2, 0).detach().cpu().numpy() + 1.0) / 2.0
            imageio.imwrite(cover_path, (255.0 * image).astype('uint8'))

            sampled = generated[sample].clamp(-1.0, 1.0).permute(1, 2, 0)
            sampled = sampled.detach().cpu().numpy() + 1.0

            image = sampled / 2.0
            imageio.imwrite(sample_path, (255.0 * image).astype('uint8')) 
開發者ID:DAI-Lab,項目名稱:SteganoGAN,代碼行數:19,代碼來源:models.py

示例4: encode

# 需要導入模塊: import imageio [as 別名]
# 或者: from imageio import imwrite [as 別名]
def encode(self, cover, output, text):
        """Encode an image.
        Args:
            cover (str): Path to the image to be used as cover.
            output (str): Path where the generated image will be saved.
            text (str): Message to hide inside the image.
        """
        cover = imread(cover, pilmode='RGB') / 127.5 - 1.0
        cover = torch.FloatTensor(cover).permute(2, 1, 0).unsqueeze(0)

        cover_size = cover.size()
        # _, _, height, width = cover.size()
        payload = self._make_payload(cover_size[3], cover_size[2], self.data_depth, text)

        cover = cover.to(self.device)
        payload = payload.to(self.device)
        generated = self.encoder(cover, payload)[0].clamp(-1.0, 1.0)

        generated = (generated.permute(2, 1, 0).detach().cpu().numpy() + 1.0) * 127.5
        imwrite(output, generated.astype('uint8'))

        if self.verbose:
            print('Encoding completed.') 
開發者ID:DAI-Lab,項目名稱:SteganoGAN,代碼行數:25,代碼來源:models.py

示例5: predict_to_directory

# 需要導入模塊: import imageio [as 別名]
# 或者: from imageio import imwrite [as 別名]
def predict_to_directory(self, spath, tpath,fold=0, stage=0, limit=-1, batchSize=32,binaryArray=False,ttflips=False):
        generic.ensure(tpath)
        with tqdm.tqdm(total=len(generic.dir_list(spath)), unit="files", desc="segmentation of images from " + str(spath) + " to " + str(tpath)) as pbar:
            for v in self.predict_on_directory(spath, fold=fold, stage=stage, limit=limit, batch_size=batchSize, ttflips=ttflips):
                b:imgaug.Batch=v;
                for i in range(len(b.data)):
                    id=b.data[i];
                    orig=b.images[i];
                    map=b.segmentation_maps_aug[i]
                    scaledMap=imgaug.augmenters.Scale({"height": orig.shape[0], "width": orig.shape[1]}).augment_segmentation_maps([map])
                    if isinstance(tpath, datasets.ConstrainedDirectory):
                        tp=tpath.path
                    else:
                        tp=tpath
                    if binaryArray:
                        np.save(os.path.join(tp, id[0:id.index('.')]),scaledMap[0].arr);
                    else: imageio.imwrite(os.path.join(tp, id[0:id.index('.')] + ".png"), (scaledMap[0].arr*255).astype(np.uint8))
                pbar.update(batchSize) 
開發者ID:musket-ml,項目名稱:segmentation_training_pipeline,代碼行數:20,代碼來源:segmentation.py

示例6: save_data_list

# 需要導入模塊: import imageio [as 別名]
# 或者: from imageio import imwrite [as 別名]
def save_data_list(input_dir, filepathes):
    """
      Read, resize and save images listed in filepathes.
    """

    cnt = 0
    bad_img = list()
    for filepath in filepathes:
        image_path = os.path.join(input_dir, filepath)
        img, path = common.misc.get_image(image_path, LOAD_SIZE, is_crop=False)
        if img is None:
            bad_img.append(path)
            np.savetxt('../bad_img.txt', bad_img, fmt='%s', comments=None)
            continue
        img = img.astype('uint8')

        output_file = os.path.join(OUTPUT_DIR, filepath)
        if not os.path.exists(os.path.dirname(output_file)):
            os.mkdir(os.path.dirname(output_file))
        imageio.imwrite(output_file, img)

        cnt += 1
        if cnt % 1000 == 0:
            print('Resizing %d / %d' % (cnt, len(filepathes))) 
開發者ID:POLane16,項目名稱:Robust-Conditional-GAN,代碼行數:26,代碼來源:ILSVRC2012.py

示例7: test_fastai_image_input

# 需要導入模塊: import imageio [as 別名]
# 或者: from imageio import imwrite [as 別名]
def test_fastai_image_input(capsys, tmpdir):
    class ImageInputModelForFastai(bentoml.BentoService):
        @bentoml.api(input=FastaiImageInput())
        def predict(self, image):
            return list(image.shape)

    ms = ImageInputModelForFastai()

    import imageio
    import numpy as np

    img_file = tmpdir.join("img.png")
    imageio.imwrite(str(img_file), np.zeros((10, 10)))
    api = ms.get_service_apis()[0]
    test_args = ["--input={}".format(img_file)]
    api.handle_cli(test_args)
    out, _ = capsys.readouterr()
    assert out.strip() == '[3, 10, 10]' 
開發者ID:bentoml,項目名稱:BentoML,代碼行數:20,代碼來源:test_fastai_image_handler.py

示例8: _save_image

# 需要導入模塊: import imageio [as 別名]
# 或者: from imageio import imwrite [as 別名]
def _save_image(image, filename, return_img=None):
        """Save a NumPy image array.

        This is an internal helper.

        """
        if not image.size:
            raise ValueError('Empty image. Have you run plot() first?')
        # write screenshot to file
        supported_formats = [".png", ".jpeg", ".jpg", ".bmp", ".tif", ".tiff"]
        if isinstance(filename, str):
            if isinstance(pyvista.FIGURE_PATH, str) and not os.path.isabs(filename):
                filename = os.path.join(pyvista.FIGURE_PATH, filename)
            if not any([filename.lower().endswith(ext) for ext in supported_formats]):
                filename += ".png"
            filename = os.path.abspath(os.path.expanduser(filename))
            w = imageio.imwrite(filename, image)
            if not return_img:
                return w
        return image 
開發者ID:pyvista,項目名稱:pyvista,代碼行數:22,代碼來源:plotting.py

示例9: obama_demo

# 需要導入模塊: import imageio [as 別名]
# 或者: from imageio import imwrite [as 別名]
def obama_demo():
    wd = 'obama_res@dense_py'
    if not osp.exists(wd):
        os.mkdir(wd)

    app = RenderPipeline(**cfg)
    img_fps = sorted(glob('obama/*.jpg'))
    triangles = sio.loadmat('tri_refine.mat')['tri']  # mx3
    triangles = _to_ctype(triangles).astype(np.int32)  # for type compatible

    for img_fp in img_fps[:]:
        vertices = sio.loadmat(img_fp.replace('.jpg', '_0.mat'))['vertex'].T  # mx3
        img = imageio.imread(img_fp).astype(np.float32) / 255.

        # end = time.clock()
        img_render = app(vertices, triangles, img)
        # print('Elapse: {:.1f}ms'.format((time.clock() - end) * 1000))

        img_wfp = osp.join(wd, osp.basename(img_fp))
        imageio.imwrite(img_wfp, img_render)
        print('Writing to {}'.format(img_wfp)) 
開發者ID:cleardusk,項目名稱:3DDFA,代碼行數:23,代碼來源:rendering.py

示例10: test_debug

# 需要導入模塊: import imageio [as 別名]
# 或者: from imageio import imwrite [as 別名]
def test_debug(self):
		image = imageio.imread("./temp/dump.png")
		grid_n = 6
		img_size = image.shape[1] // grid_n
		img_ch = image.shape[-1]

		images = np.vsplit(image, grid_n)
		images = [np.hsplit(i, grid_n) for i in images]
		images = np.reshape(np.array(images), [grid_n*grid_n, img_size, img_size, img_ch])

		with tf.Graph().as_default():
			with tf.Session() as sess:
				v_images_placeholder = tf.placeholder(dtype=tf.float32)
				v_images = tf.contrib.gan.eval.preprocess_image(v_images_placeholder)
				v_logits = tf.contrib.gan.eval.run_inception(v_images)
				v_score = tf.contrib.gan.eval.classifier_score_from_logits(v_logits)
				score, logits = sess.run([v_score, v_logits], feed_dict={v_images_placeholder:images})


		imageio.imwrite("./temp/inception_logits.png", logits) 
開發者ID:Octavian-ai,項目名稱:BigGAN-TPU-TensorFlow,代碼行數:22,代碼來源:inception_score.py

示例11: plot_images

# 需要導入模塊: import imageio [as 別名]
# 或者: from imageio import imwrite [as 別名]
def plot_images(args, x_sample, dir, file_name, size_x=10, size_y=10):
    batch, channels, height, width = x_sample.shape

    print(x_sample.shape)

    mosaic = np.zeros((height * size_y, width * size_x, channels))

    for j in range(size_y):
        for i in range(size_x):
            idx = j * size_x + i

            image = x_sample[idx]

            mosaic[j*height:(j+1)*height, i*height:(i+1)*height] = \
                image.transpose(1, 2, 0)

    # Remove channel for BW images
    mosaic = mosaic.squeeze()

    imageio.imwrite(dir + file_name + '.png', mosaic) 
開發者ID:jornpeters,項目名稱:integer_discrete_flows,代碼行數:22,代碼來源:visual_evaluation.py

示例12: imsave

# 需要導入模塊: import imageio [as 別名]
# 或者: from imageio import imwrite [as 別名]
def imsave(path, img):
  # type: (str, (Union[np.ndarray,list])) -> None
  """
  Automatically clip the image represented in a numpy array to 0~255 and save the image.
  :param path: Path to save the image.
  :param img: Image represented in numpy array with a legal format for scipy.misc.imsave
  :return: None
  """
  if isinstance(img, list):
    img = np.array(img)
  if img.shape[-1] > 3 and len(img.shape) >= 3:
    # Convert the image into one channel by summing all channels together
    img = np.sum(img, axis=-1, keepdims=True)
  img = np.clip(img, 0, 255).astype(np.uint8)
  if len(img.shape) == 3 and img.shape[-1] == 1:
    img = np.squeeze(img, -1)
  imageio.imwrite(path, img) 
開發者ID:jerryli27,項目名稱:AniSeg,代碼行數:19,代碼來源:util_io.py

示例13: main

# 需要導入模塊: import imageio [as 別名]
# 或者: from imageio import imwrite [as 別名]
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('--env', type=str, help="environment name")
    parser.add_argument('--seed', type=int, default=time.time())
    parser.add_argument('--out', type=str, help="path to save figure")
    args = parser.parse_args()

    img = get_img(args.env, args.seed)
    imageio.imwrite(args.out, img) 
開發者ID:HumanCompatibleAI,項目名稱:adversarial-policies,代碼行數:11,代碼來源:grab_frame.py

示例14: save_im

# 需要導入模塊: import imageio [as 別名]
# 或者: from imageio import imwrite [as 別名]
def save_im(path, im, jpg_quality=95):
  """Saves an image to a file.

  :param path: Path to the output image file.
  :param im: ndarray with the image to save.
  :param jpg_quality: Quality of the saved image (applies only to JPEG).
  """
  ext = os.path.splitext(path)[1][1:]
  if ext.lower() in ['jpg', 'jpeg']:
    imageio.imwrite(path, im, quality=jpg_quality)
  else:
    imageio.imwrite(path, im) 
開發者ID:thodan,項目名稱:bop_toolkit,代碼行數:14,代碼來源:inout.py

示例15: save_depth

# 需要導入模塊: import imageio [as 別名]
# 或者: from imageio import imwrite [as 別名]
def save_depth(path, im):
  """Saves a depth image (16-bit) to a PNG file.

  :param path: Path to the output depth image file.
  :param im: ndarray with the depth image to save.
  """
  if path.split('.')[-1].lower() != 'png':
    raise ValueError('Only PNG format is currently supported.')

  im_uint16 = np.round(im).astype(np.uint16)

  # PyPNG library can save 16-bit PNG and is faster than imageio.imwrite().
  w_depth = png.Writer(im.shape[1], im.shape[0], greyscale=True, bitdepth=16)
  with open(path, 'wb') as f:
    w_depth.write(f, np.reshape(im_uint16, (-1, im.shape[1]))) 
開發者ID:thodan,項目名稱:bop_toolkit,代碼行數:17,代碼來源:inout.py


注:本文中的imageio.imwrite方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。