本文整理匯總了Python中imageio.imsave方法的典型用法代碼示例。如果您正苦於以下問題:Python imageio.imsave方法的具體用法?Python imageio.imsave怎麽用?Python imageio.imsave使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類imageio
的用法示例。
在下文中一共展示了imageio.imsave方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: imsave
# 需要導入模塊: import imageio [as 別名]
# 或者: from imageio import imsave [as 別名]
def imsave(filename: str, data: np.ndarray):
"""Custom implementation of imsave to avoid skimage dependency.
Parameters
----------
filename : string
The path to write the file to.
data : np.ndarray
The image data.
"""
ext = os.path.splitext(filename)[1]
if ext in [".tif", ".tiff"]:
import tifffile
tifffile.imsave(filename, data)
else:
import imageio
imageio.imsave(filename, data)
示例2: color2annotation
# 需要導入模塊: import imageio [as 別名]
# 或者: from imageio import imsave [as 別名]
def color2annotation(input_path, output_path):
# image = scipy.misc.imread(input_path)
# imread is deprecated in SciPy 1.0.0, and will be removed in 1.2.0. Use imageio.imread instead.
image = imageio.imread(input_path)
image = (image >= 128).astype(np.uint8)
image = 4 * image[:, :, 0] + 2 * image[:, :, 1] + image[:, :, 2]
cat_image = np.zeros((2448,2448), dtype=np.uint8)
cat_image[image == 3] = 0 # (Cyan: 011) Urban land
cat_image[image == 6] = 1 # (Yellow: 110) Agriculture land
cat_image[image == 5] = 2 # (Purple: 101) Rangeland
cat_image[image == 2] = 3 # (Green: 010) Forest land
cat_image[image == 1] = 4 # (Blue: 001) Water
cat_image[image == 7] = 5 # (White: 111) Barren land
cat_image[image == 0] = 6 # (Black: 000) Unknown
# scipy.misc.imsave(output_path, cat_image)
imageio.imsave(output_path, cat_image)
pass
開發者ID:GeneralLi95,項目名稱:deepglobe_land_cover_classification_with_deeplabv3plus,代碼行數:22,代碼來源:rgb2label.py
示例3: check_movements
# 需要導入模塊: import imageio [as 別名]
# 或者: from imageio import imsave [as 別名]
def check_movements(ims, bef_ims, aft_ims, processed_roidb, delta_bef_roi, delta_aft_roi):
save_name = '/home/wangshiyao/Documents/testdata/'+processed_roidb[0]['image'].split('/')[-1]
print 'saving images to '+save_name
boxes = processed_roidb[0]['boxes']
ims.squeeze().transpose(1, 2, 0).astype(np.int8)
bef_ims.squeeze().transpose(1, 2, 0).astype(np.int8)
aft_ims.squeeze().transpose(1, 2, 0).astype(np.int8)
delta_bef_roi = np.array(delta_bef_roi).transpose(1, 0, 2)
delta_aft_roi = np.array(delta_aft_roi).transpose(1, 0, 2)
for i in range(boxes.shape[0]):
cv2.rectangle(ims, (int(boxes[i][0]), int(boxes[i][1])),(int(boxes[i][2]), int(boxes[i][3])),(55, 255, 155),5)
bef_box = bbox_pred(boxes[i].reshape(1, -1), delta_bef_roi[i])
cv2.rectangle(bef_ims, (int(bef_box[0][0]), int(bef_box[0][1])),(int(bef_box[0][2]), int(bef_box[0][3])),(55, 255, 155),5)
aft_box = bbox_pred(boxes[i].reshape(1, -1), delta_aft_roi[i])
cv2.rectangle(aft_ims, (int(aft_box[0][0]), int(aft_box[0][1])),(int(aft_box[0][2]), int(aft_box[0][3])),(55, 255, 155),5)
imageio.imsave(save_name, ims)
imageio.imsave(save_name.split('.')[-2]+'_bef'+'.JPEG', bef_ims)
imageio.imsave(save_name.split('.')[-2]+'_aft'+'.JPEG', aft_ims)
示例4: main
# 需要導入模塊: import imageio [as 別名]
# 或者: from imageio import imsave [as 別名]
def main(filename, width, invert, gamma, indent, chars1, chars2, title, output):
# Aspect ratio is determined by the input image.
# Width is determined here.
img = load_image(filename, width, invert, gamma)
# imageio.imsave("test.jpg", img)
# Analyze the image
hog_fd = process(img)
if title:
# title is a string
# center it, and make bytes
title = " " * int(indent + (width - len(title))/2) + title
title = title.encode("utf-8")
# Map to ASCII
if not output:
output = filename + ".txt"
render(hog_fd, output, chars1, chars2, indent, title)
示例5: example_pointnav_draw_target_birdseye_view
# 需要導入模塊: import imageio [as 別名]
# 或者: from imageio import imsave [as 別名]
def example_pointnav_draw_target_birdseye_view():
goal_radius = 0.5
goal = NavigationGoal(position=[10, 0.25, 10], radius=goal_radius)
agent_position = np.array([0, 0.25, 0])
agent_rotation = -np.pi / 4
dummy_episode = NavigationEpisode(
goals=[goal],
episode_id="dummy_id",
scene_id="dummy_scene",
start_position=agent_position,
start_rotation=agent_rotation,
)
target_image = maps.pointnav_draw_target_birdseye_view(
agent_position,
agent_rotation,
np.asarray(dummy_episode.goals[0].position),
goal_radius=dummy_episode.goals[0].radius,
agent_radius_px=25,
)
imageio.imsave(
os.path.join(IMAGE_DIR, "pointnav_target_image.png"), target_image
)
示例6: save_and_resize
# 需要導入模塊: import imageio [as 別名]
# 或者: from imageio import imsave [as 別名]
def save_and_resize(img: np.array,
filename: str,
size=None,
nearest: bool=False) -> None:
"""
Resizes the image if necessary and saves it. The resizing will keep the image ratio
:param img: the image to resize and save (numpy array)
:param filename: filename of the saved image
:param size: size of the image after resizing (in pixels). The ratio of the original image will be kept
:param nearest: whether to use nearest interpolation method (default to False)
:return:
"""
if size is not None:
h, w = img.shape[:2]
ratio = float(np.sqrt(size/(h*w)))
resized = cv2.resize(img, (int(w*ratio), int(h*ratio)),
interpolation=cv2.INTER_NEAREST if nearest else cv2.INTER_LINEAR)
imsave(filename, resized)
else:
imsave(filename, img)
示例7: visualize_clusters_on_disk
# 需要導入模塊: import imageio [as 別名]
# 或者: from imageio import imsave [as 別名]
def visualize_clusters_on_disk(img_df):
CLUSTER_FOLDER = 'clusters30_agg_avg'
os.mkdir((ROOT_DIR / 'clustering' / CLUSTER_FOLDER).as_posix())
for i in range(-1, NUM_CLUSTERS + 1):
os.mkdir((ROOT_DIR / 'clustering' / CLUSTER_FOLDER / str(i)).as_posix())
img_df.apply(lambda x:
imageio.imsave((ROOT_DIR / 'clustering' / CLUSTER_FOLDER / x['cluster-id'] /
(x['ImageId'])).as_posix(), x['images']), axis=1)
counts = img_df.groupby(['cluster-id']).size().sort_values(ascending=False)
print(counts)
C = list(counts.items())
C_Sorted = sorted(C, key=lambda x: x[1])
示例8: call_model
# 需要導入模塊: import imageio [as 別名]
# 或者: from imageio import imsave [as 別名]
def call_model(image, api_host='', model_id=''):
tmp_filename = str(uuid.uuid4()) + '.png'
imageio.imsave(tmp_filename, image)
path = '/models/images/classification/classify_one.json'
files = {'image_file': open(tmp_filename, 'rb')}
try:
r = post(api_host + path, files=files, params={'job_id': model_id})
finally:
os.remove(tmp_filename)
time.sleep(2) # wait 2 seconds.
result = r.json()
if result.get('error'):
raise Exception(result.get('error').get('description'))
for res_element in result['predictions']:
if 'LIKE' in res_element[0]:
print(result)
return res_element[1]
return 0.0
示例9: computeAndCacheBG
# 需要導入模塊: import imageio [as 別名]
# 或者: from imageio import imsave [as 別名]
def computeAndCacheBG(self, seqi, cami):
bg_file_name = self.getBackgroundName(seqi, cami)
bg_path = '/'.join(bg_file_name.split('/')[:-1])
num_samples = 50
import os
names = [os.path.join(bg_path, file) for file in os.listdir(bg_path)]
names_subsampled = names[0::len(names)//num_samples]
image_batch = [np.array(imageio.imread(name), dtype='float32') for name in names_subsampled]
image_batch = np.array(image_batch)
print("Computing median of {} images".format(len(image_batch)))
image_median = np.median(image_batch, axis=0)
imageio.imsave(bg_file_name, image_median)
print("Saved background image to {}".format(bg_file_name))
# training: 87395
# validation:
# testing: 28400
示例10: save_img
# 需要導入模塊: import imageio [as 別名]
# 或者: from imageio import imsave [as 別名]
def save_img(img_name, img_out, val_dirs):
assert img_name.endswith('.png')
assert img_out.ndim == 4 and img_out.shape[1] == 3, 'Expected NCHW, got {}'.format(img_out)
img_dir = path.join(val_dirs.out_dir, 'imgs')
os.makedirs(img_dir, exist_ok=True)
img_out = np.transpose(img_out[0, :, :, :], (1, 2, 0)) # Make HWC
img_out_p = path.join(img_dir, img_name)
print('Saving {}...'.format(img_out_p))
imageio.imsave(img_out_p, img_out)
示例11: visualizer
# 需要導入模塊: import imageio [as 別名]
# 或者: from imageio import imsave [as 別名]
def visualizer(preds):
# rotation, base, elbow, wrist, pitch, yaw, roll ,x, y, z, = preds
#################################################
#for visualization
#################################################
# #rotation = rotation + 90
# #base = base - 90
# #elbow = elbow - base
# #wrist = wrist - elbow
# gripper = 0
# res = client.request('vset /arm {rotation} {base} {elbow} {wrist} {gripper}'.format(**locals()))
# #print(res)
# res = client.request('vset /camera/1/location {x} {y} {z}'.format(**locals()))
# #print(res)
# pitch = -pitch
# yaw = yaw-180
# roll = -roll
# res = client.request('vset /camera/1/rotation {pitch} {yaw} {roll}'.format(**locals()))
# #print(res)
# print('{rotation} {base} {elbow} {wrist} {gripper} {x} {y} {z} {pitch} {yaw} {roll}'.format(**locals()))
set_camrea(preds)
client.request('vset /data_capture/capture_frame')
'''
i = 1
data = client.request('vget /camera/{i}/lit png'.format(**locals()))
im = read_png(data)
io.imsave('cam_%d.png' % i, im)
print('image saved')
return im
'''
示例12: main
# 需要導入模塊: import imageio [as 別名]
# 或者: from imageio import imsave [as 別名]
def main(width, height, output, star):
if not height:
height = int(width * 3 / 4)
w = width * 3
h = height * 4
img = np.zeros([h, w], dtype=np.uint8)
perlin(img, h, w)
if star:
# Overlay with a N-pointed star
draw_star(img, h, w, points=int(star))
imageio.imsave(output, img)
示例13: load_image
# 需要導入模塊: import imageio [as 別名]
# 或者: from imageio import imsave [as 別名]
def load_image(filename):
if filename in loaded_files:
return loaded_files[filename]
img = imageio.imread(filename, as_gray=True).astype(np.float)
# Warp it to be reasonably squared
tf = transform.AffineTransform(rotation=ROTATION, shear=SHEAR, translation=TRANSLATION)
img = transform.warp(img, inverse_map=tf)
# Normalize the whole image
# img *= 1.0/(img.max() - img.min())
img = (img - np.min(img))/np.ptp(img)
# Normalize on a sigmoid curve to better separate ink from paper
k = 10
img = np.sqrt(1 / (1 + np.exp(k * (img - 0.5))))
# imageio.imsave("chars_overstrike_rot.png", img)
loaded_files[filename] = img
return img
# Pull out the image of a character-pair, c1 overstruck with c2.
# The character at (x, y) should be the same as the character at (y, x) but due to printing may be slightly
# different. We just analyze them all anyway, and it'll sort out in the final mapping.
# (Could double the performance by folding in half, but we don't care really)
示例14: main
# 需要導入模塊: import imageio [as 別名]
# 或者: from imageio import imsave [as 別名]
def main(filename, width, invert, gamma, indent, layers):
# Aspect ratio is determined by the input image.
# Width is determined here.
img = load_image(filename, width, invert, gamma)
imageio.imsave("test.jpg", img)
# Analyze the image
hog_fd = process(img)
# Map to ASCII
render(hog_fd, layers, filename + ".txt", indent)
示例15: main
# 需要導入模塊: import imageio [as 別名]
# 或者: from imageio import imsave [as 別名]
def main():
args = get_args()
output_path = args.output
img_size = args.img_size
mypath = '../data/CACD2000'
isPlot = False
onlyfiles = [f for f in listdir(mypath) if isfile(join(mypath, f))]
# landmark_list = []
# for i in tqdm(range(len(onlyfiles))):
# landmark_list.append(get_landmarks(onlyfiles[i], args))
landmark_ref = np.matrix(np.load('../data/CACD_mean_face.npy', allow_pickle=True))
# Points used to line up the images.
ALIGN_POINTS = list(range(16))
for i in tqdm(range(len(onlyfiles))):
img_name = onlyfiles[i]
input_img = cv2.imread(mypath+'/'+img_name)
input_img = cv2.cvtColor(input_img, cv2.COLOR_BGR2RGB)
img_h, img_w, _ = np.shape(input_img)
landmark = get_landmarks(img_name, args)[0]
M = transformation_from_points(landmark_ref[ALIGN_POINTS],
landmark[ALIGN_POINTS])
input_img = warp_im(input_img, M, (256, 256, 3))
io.imsave(args.output +'/'+ img_name, input_img)