本文整理匯總了Python中im2txt.configuration.ModelConfig方法的典型用法代碼示例。如果您正苦於以下問題:Python configuration.ModelConfig方法的具體用法?Python configuration.ModelConfig怎麽用?Python configuration.ModelConfig使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類im2txt.configuration
的用法示例。
在下文中一共展示了configuration.ModelConfig方法的8個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: setUp
# 需要導入模塊: from im2txt import configuration [as 別名]
# 或者: from im2txt.configuration import ModelConfig [as 別名]
def setUp(self):
super(ShowAndTellModelTest, self).setUp()
self._model_config = configuration.ModelConfig()
示例2: main
# 需要導入模塊: from im2txt import configuration [as 別名]
# 或者: from im2txt.configuration import ModelConfig [as 別名]
def main(_):
# Build the inference graph.
g = tf.Graph()
with g.as_default():
model = inference_wrapper.InferenceWrapper()
restore_fn = model.build_graph_from_config(configuration.ModelConfig(),
FLAGS.checkpoint_path)
g.finalize()
# Create the vocabulary.
vocab = vocabulary.Vocabulary(FLAGS.vocab_file)
filenames = []
for file_pattern in FLAGS.input_files.split(","):
filenames.extend(tf.gfile.Glob(file_pattern))
tf.logging.info("Running caption generation on %d files matching %s",
len(filenames), FLAGS.input_files)
with tf.Session(graph=g) as sess:
# Load the model from checkpoint.
restore_fn(sess)
# Prepare the caption generator. Here we are implicitly using the default
# beam search parameters. See caption_generator.py for a description of the
# available beam search parameters.
generator = caption_generator.CaptionGenerator(model, vocab)
for filename in filenames:
with tf.gfile.GFile(filename, "r") as f:
image = f.read()
captions = generator.beam_search(sess, image)
print("Captions for image %s:" % os.path.basename(filename))
for i, caption in enumerate(captions):
# Ignore begin and end words.
sentence = [vocab.id_to_word(w) for w in caption.sentence[1:-1]]
sentence = " ".join(sentence)
print(" %d) %s (p=%f)" % (i, sentence, math.exp(caption.logprob)))
示例3: run
# 需要導入模塊: from im2txt import configuration [as 別名]
# 或者: from im2txt.configuration import ModelConfig [as 別名]
def run():
"""Runs evaluation in a loop, and logs summaries to TensorBoard."""
# Create the evaluation directory if it doesn't exist.
eval_dir = FLAGS.eval_dir
if not tf.gfile.IsDirectory(eval_dir):
tf.logging.info("Creating eval directory: %s", eval_dir)
tf.gfile.MakeDirs(eval_dir)
g = tf.Graph()
with g.as_default():
# Build the model for evaluation.
model_config = configuration.ModelConfig()
model_config.input_file_pattern = FLAGS.input_file_pattern
model = show_and_tell_model.ShowAndTellModel(model_config, mode="eval")
model.build()
# Create the Saver to restore model Variables.
saver = tf.train.Saver()
# Create the summary operation and the summary writer.
summary_op = tf.summary.merge_all()
summary_writer = tf.summary.FileWriter(eval_dir)
g.finalize()
# Run a new evaluation run every eval_interval_secs.
while True:
start = time.time()
tf.logging.info("Starting evaluation at " + time.strftime(
"%Y-%m-%d-%H:%M:%S", time.localtime()))
run_once(model, saver, summary_writer, summary_op)
time_to_next_eval = start + FLAGS.eval_interval_secs - time.time()
if time_to_next_eval > 0:
time.sleep(time_to_next_eval)
示例4: __init__
# 需要導入模塊: from im2txt import configuration [as 別名]
# 或者: from im2txt.configuration import ModelConfig [as 別名]
def __init__(self, model_path, vocab_path):
self.model_path = model_path
self.vocab_path = vocab_path
self.g = tf.Graph()
with self.g.as_default():
self.model = inference_wrapper.InferenceWrapper()
self.restore_fn = self.model.build_graph_from_config(
configuration.ModelConfig(), model_path)
self.g.finalize()
self.vocab = vocabulary.Vocabulary(vocab_path)
self.generator = caption_generator.CaptionGenerator(self.model,
self.vocab)
self.sess = tf.Session(graph=self.g)
self.restore_fn(self.sess)
return
示例5: main
# 需要導入模塊: from im2txt import configuration [as 別名]
# 或者: from im2txt.configuration import ModelConfig [as 別名]
def main(_):
# Build the inference graph.
g = tf.Graph()
with g.as_default():
model = inference_wrapper.InferenceWrapper()
restore_fn = model.build_graph_from_config(configuration.ModelConfig(),
FLAGS.checkpoint_path)
g.finalize()
# Create the vocabulary.
vocab = vocabulary.Vocabulary(FLAGS.vocab_file)
filenames = []
for file_pattern in FLAGS.input_files.split(","):
filenames.extend(tf.gfile.Glob(file_pattern))
tf.logging.info("Running caption generation on %d files matching %s",
len(filenames), FLAGS.input_files)
with tf.Session(graph=g) as sess:
# Load the model from checkpoint.
restore_fn(sess)
# Prepare the caption generator. Here we are implicitly using the default
# beam search parameters. See caption_generator.py for a description of the
# available beam search parameters.
generator = caption_generator.CaptionGenerator(model, vocab)
for filename in filenames:
with tf.gfile.GFile(filename, "rb") as f:
image = f.read()
captions = generator.beam_search(sess, image)
print("Captions for image %s:" % os.path.basename(filename))
for i, caption in enumerate(captions):
# Ignore begin and end words.
sentence = [vocab.id_to_word(w) for w in caption.sentence[1:-1]]
sentence = " ".join(sentence)
print(" %d) %s (p=%f)" % (i, sentence, math.exp(caption.logprob)))
示例6: predict
# 需要導入模塊: from im2txt import configuration [as 別名]
# 或者: from im2txt.configuration import ModelConfig [as 別名]
def predict(self, sess, image_raw_feed, input_feed, mask_feed):
tf.logging.info("Building model.")
start_vars = set(x.name for x in tf.global_variables())
self.build_model(configuration.ModelConfig(), image_raw_feed, input_feed, mask_feed)
end_vars = tf.global_variables()
restore_vars = [x for x in end_vars if x.name not in start_vars]
saver = tf.train.Saver(var_list = restore_vars)
restore_fn = self._create_restore_fn(FLAGS.checkpoint_path, saver)
restore_fn(sess)
sum_log_probs = sess.graph.get_tensor_by_name("batch_loss:0")
logits = self.model.logits
softmax = sess.graph.get_tensor_by_name("softmax:0")
# return sum_log_probs, logits, softmax
return sum_log_probs, softmax, logits
示例7: run
# 需要導入模塊: from im2txt import configuration [as 別名]
# 或者: from im2txt.configuration import ModelConfig [as 別名]
def run():
"""Runs evaluation in a loop, and logs summaries to TensorBoard."""
# Create the evaluation directory if it doesn't exist.
eval_dir = FLAGS.eval_dir
if not tf.gfile.IsDirectory(eval_dir):
tf.logging.info("Creating eval directory: %s", eval_dir)
tf.gfile.MakeDirs(eval_dir)
g = tf.Graph()
with g.as_default():
# Build the model for evaluation.
model_config = configuration.ModelConfig()
model_config.input_file_pattern = FLAGS.input_file_pattern
model = show_and_tell_model.ShowAndTellModel(model_config, mode="eval")
model.build()
# Create the Saver to restore model Variables.
saver = tf.train.Saver()
# Create the summary operation and the summary writer.
summary_op = tf.merge_all_summaries()
summary_writer = tf.train.SummaryWriter(eval_dir)
g.finalize()
# Run a new evaluation run every eval_interval_secs.
while True:
start = time.time()
tf.logging.info("Starting evaluation at " + time.strftime(
"%Y-%m-%d-%H:%M:%S", time.localtime()))
run_once(model, saver, summary_writer, summary_op)
time_to_next_eval = start + FLAGS.eval_interval_secs - time.time()
if time_to_next_eval > 0:
time.sleep(time_to_next_eval)
示例8: main
# 需要導入模塊: from im2txt import configuration [as 別名]
# 或者: from im2txt.configuration import ModelConfig [as 別名]
def main(_):
# Build the inference graph.
g = tf.Graph()
with g.as_default():
model = inference_wrapper.InferenceWrapper()
restore_fn = model.build_graph_from_config(configuration.ModelConfig(),
FLAGS.checkpoint_path)
g.finalize()
# Create the vocabulary.
vocab = vocabulary.Vocabulary(FLAGS.vocab_file)
filenames = []
for file_pattern in FLAGS.input_files.split(","):
filenames.extend(tf.gfile.Glob(file_pattern))
tf.logging.info("Running caption generation on %d files matching %s",
len(filenames), FLAGS.input_files)
with tf.Session(graph=g) as sess:
# Load the model from checkpoint.
restore_fn(sess)
# Prepare the caption generator. Here we are implicitly using the default
# beam search parameters. See caption_generator.py for a description of the
# available beam search parameters.
generator = caption_generator.CaptionGenerator(model, vocab)
for filename in filenames:
with tf.gfile.GFile(filename, "r") as f:
image = f.read()
captions = generator.beam_search(sess, image)
print("Captions for image %s:" % os.path.basename(filename))
for i, caption in enumerate(captions):
# Ignore begin and end words.
sentence = [vocab.id_to_word(w) for w in caption.sentence[1:-1]]
sentence = " ".join(sentence)
print(" %d) %s (xyzj=%f)" % (i, sentence, math.exp(caption.logprob)))