當前位置: 首頁>>代碼示例>>Python>>正文


Python metrics.Loss方法代碼示例

本文整理匯總了Python中ignite.metrics.Loss方法的典型用法代碼示例。如果您正苦於以下問題:Python metrics.Loss方法的具體用法?Python metrics.Loss怎麽用?Python metrics.Loss使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在ignite.metrics的用法示例。


在下文中一共展示了metrics.Loss方法的12個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: create_supervised_trainer

# 需要導入模塊: from ignite import metrics [as 別名]
# 或者: from ignite.metrics import Loss [as 別名]
def create_supervised_trainer(self):

        if self.device:
            self.model.to(self.device)

        engine = Engine(self.update_engine)
        metrics = {}
        for i, metric in enumerate(self.metrics):
            if not isinstance(metric, Loss):
                n = metric.__class__.__name__
                tm = TrainingMetric(metric)
                metrics[n] = tm
                tm.attach(engine, n)

        return engine, metrics 
開發者ID:feedly,項目名稱:transfer-nlp,代碼行數:17,代碼來源:trainers.py

示例2: test_compute

# 需要導入模塊: from ignite import metrics [as 別名]
# 或者: from ignite.metrics import Loss [as 別名]
def test_compute():
    loss = Loss(nll_loss)

    y_pred = torch.tensor([[0.1, 0.4, 0.5], [0.1, 0.7, 0.2]]).log()
    y = torch.tensor([2, 2]).long()
    loss.update((y_pred, y))
    assert_almost_equal(loss.compute(), 1.1512925625)

    y_pred = torch.tensor([[0.1, 0.3, 0.6], [0.6, 0.2, 0.2], [0.2, 0.7, 0.1]]).log()
    y = torch.tensor([2, 0, 2]).long()
    loss.update((y_pred, y))
    assert_almost_equal(loss.compute(), 1.1253643036)  # average 
開發者ID:pytorch,項目名稱:ignite,代碼行數:14,代碼來源:test_loss.py

示例3: test_compute_on_criterion

# 需要導入模塊: from ignite import metrics [as 別名]
# 或者: from ignite.metrics import Loss [as 別名]
def test_compute_on_criterion():
    loss = Loss(nn.NLLLoss())

    y_pred = torch.tensor([[0.1, 0.4, 0.5], [0.1, 0.7, 0.2]]).log()
    y = torch.tensor([2, 2]).long()
    loss.update((y_pred, y))
    assert_almost_equal(loss.compute(), 1.1512925625)

    y_pred = torch.tensor([[0.1, 0.3, 0.6], [0.6, 0.2, 0.2], [0.2, 0.7, 0.1]]).log()
    y = torch.tensor([2, 0, 2]).long()
    loss.update((y_pred, y))
    assert_almost_equal(loss.compute(), 1.1253643036)  # average 
開發者ID:pytorch,項目名稱:ignite,代碼行數:14,代碼來源:test_loss.py

示例4: test_non_averaging_loss

# 需要導入模塊: from ignite import metrics [as 別名]
# 或者: from ignite.metrics import Loss [as 別名]
def test_non_averaging_loss():
    loss = Loss(nn.NLLLoss(reduction="none"))

    y_pred = torch.tensor([[0.1, 0.4, 0.5], [0.1, 0.7, 0.2]]).log()
    y = torch.tensor([2, 2]).long()
    with pytest.raises(ValueError):
        loss.update((y_pred, y)) 
開發者ID:pytorch,項目名稱:ignite,代碼行數:9,代碼來源:test_loss.py

示例5: test_kwargs_loss

# 需要導入模塊: from ignite import metrics [as 別名]
# 或者: from ignite.metrics import Loss [as 別名]
def test_kwargs_loss():
    loss = Loss(nll_loss)

    y_pred = torch.tensor([[0.1, 0.4, 0.5], [0.1, 0.7, 0.2]]).log()
    y = torch.tensor([2, 2]).long()
    loss.update((y_pred, y, {"weight": torch.tensor([0, 0, 0], dtype=torch.float)}))
    assert_almost_equal(loss.compute(), 0) 
開發者ID:pytorch,項目名稱:ignite,代碼行數:9,代碼來源:test_loss.py

示例6: test_reset

# 需要導入模塊: from ignite import metrics [as 別名]
# 或者: from ignite.metrics import Loss [as 別名]
def test_reset():
    loss = Loss(nll_loss)

    y_pred = torch.tensor([[0.1, 0.3, 0.6], [0.6, 0.2, 0.2]]).log()
    y = torch.tensor([2, 0]).long()
    loss.update((y_pred, y))
    loss.compute()
    loss.reset()
    with pytest.raises(NotComputableError):
        loss.compute() 
開發者ID:pytorch,項目名稱:ignite,代碼行數:12,代碼來源:test_loss.py

示例7: train

# 需要導入模塊: from ignite import metrics [as 別名]
# 或者: from ignite.metrics import Loss [as 別名]
def train():

    writer = SummaryWriter()

    net, optimiser, lr_scheduler, train_loader, val_loader = cifar10_experiment()

    # Pre-training pruning using SKIP
    keep_masks = SNIP(net, 0.05, train_loader, device)  # TODO: shuffle?
    apply_prune_mask(net, keep_masks)

    trainer = create_supervised_trainer(net, optimiser, F.nll_loss, device)
    evaluator = create_supervised_evaluator(net, {
        'accuracy': Accuracy(),
        'nll': Loss(F.nll_loss)
    }, device)

    pbar = ProgressBar()
    pbar.attach(trainer)

    @trainer.on(Events.ITERATION_COMPLETED)
    def log_training_loss(engine):
        lr_scheduler.step()
        iter_in_epoch = (engine.state.iteration - 1) % len(train_loader) + 1
        if engine.state.iteration % LOG_INTERVAL == 0:
            # pbar.log_message("Epoch[{}] Iteration[{}/{}] Loss: {:.2f}"
            #       "".format(engine.state.epoch, iter_in_epoch, len(train_loader), engine.state.output))
            writer.add_scalar("training/loss", engine.state.output,
                              engine.state.iteration)

    @trainer.on(Events.EPOCH_COMPLETED)
    def log_epoch(engine):
        evaluator.run(val_loader)

        metrics = evaluator.state.metrics
        avg_accuracy = metrics['accuracy']
        avg_nll = metrics['nll']

        # pbar.log_message("Validation Results - Epoch: {}  Avg accuracy: {:.2f} Avg loss: {:.2f}"
        #       .format(engine.state.epoch, avg_accuracy, avg_nll))

        writer.add_scalar("validation/loss", avg_nll, engine.state.iteration)
        writer.add_scalar("validation/accuracy", avg_accuracy,
                          engine.state.iteration)

    trainer.run(train_loader, EPOCHS)

    # Let's look at the final weights
    # for name, param in net.named_parameters():
    #     if name.endswith('weight'):
    #         writer.add_histogram(name, param)

    writer.close() 
開發者ID:mi-lad,項目名稱:snip,代碼行數:54,代碼來源:train.py

示例8: run

# 需要導入模塊: from ignite import metrics [as 別名]
# 或者: from ignite.metrics import Loss [as 別名]
def run(train_batch_size, val_batch_size, epochs, lr, momentum, log_interval, log_dir):
    train_loader, val_loader = get_data_loaders(train_batch_size, val_batch_size)
    model = Net()
    writer = SummaryWriter(log_dir=log_dir)
    device = "cpu"

    if torch.cuda.is_available():
        device = "cuda"

    model.to(device)  # Move model before creating optimizer
    optimizer = SGD(model.parameters(), lr=lr, momentum=momentum)
    criterion = nn.NLLLoss()
    trainer = create_supervised_trainer(model, optimizer, criterion, device=device)

    val_metrics = {"accuracy": Accuracy(), "nll": Loss(criterion)}
    evaluator = create_supervised_evaluator(model, metrics=val_metrics, device=device)

    @trainer.on(Events.ITERATION_COMPLETED(every=log_interval))
    def log_training_loss(engine):
        print(
            "Epoch[{}] Iteration[{}/{}] Loss: {:.2f}"
            "".format(engine.state.epoch, engine.state.iteration, len(train_loader), engine.state.output)
        )
        writer.add_scalar("training/loss", engine.state.output, engine.state.iteration)

    @trainer.on(Events.EPOCH_COMPLETED)
    def log_training_results(engine):
        evaluator.run(train_loader)
        metrics = evaluator.state.metrics
        avg_accuracy = metrics["accuracy"]
        avg_nll = metrics["nll"]
        print(
            "Training Results - Epoch: {}  Avg accuracy: {:.2f} Avg loss: {:.2f}".format(
                engine.state.epoch, avg_accuracy, avg_nll
            )
        )
        writer.add_scalar("training/avg_loss", avg_nll, engine.state.epoch)
        writer.add_scalar("training/avg_accuracy", avg_accuracy, engine.state.epoch)

    @trainer.on(Events.EPOCH_COMPLETED)
    def log_validation_results(engine):
        evaluator.run(val_loader)
        metrics = evaluator.state.metrics
        avg_accuracy = metrics["accuracy"]
        avg_nll = metrics["nll"]
        print(
            "Validation Results - Epoch: {}  Avg accuracy: {:.2f} Avg loss: {:.2f}".format(
                engine.state.epoch, avg_accuracy, avg_nll
            )
        )
        writer.add_scalar("valdation/avg_loss", avg_nll, engine.state.epoch)
        writer.add_scalar("valdation/avg_accuracy", avg_accuracy, engine.state.epoch)

    # kick everything off
    trainer.run(train_loader, max_epochs=epochs)

    writer.close() 
開發者ID:pytorch,項目名稱:ignite,代碼行數:59,代碼來源:mnist_with_tensorboard.py

示例9: run

# 需要導入模塊: from ignite import metrics [as 別名]
# 或者: from ignite.metrics import Loss [as 別名]
def run(train_batch_size, val_batch_size, epochs, lr, momentum, log_interval):
    train_loader, val_loader = get_data_loaders(train_batch_size, val_batch_size)
    model = Net()
    device = "cpu"

    if torch.cuda.is_available():
        device = "cuda"

    model.to(device)  # Move model before creating optimizer
    optimizer = SGD(model.parameters(), lr=lr, momentum=momentum)
    criterion = nn.NLLLoss()
    trainer = create_supervised_trainer(model, optimizer, criterion, device=device)
    trainer.logger = setup_logger("trainer")

    val_metrics = {"accuracy": Accuracy(), "nll": Loss(criterion)}
    evaluator = create_supervised_evaluator(model, metrics=val_metrics, device=device)
    evaluator.logger = setup_logger("evaluator")

    desc = "ITERATION - loss: {:.2f}"
    pbar = tqdm(initial=0, leave=False, total=len(train_loader), desc=desc.format(0))

    @trainer.on(Events.ITERATION_COMPLETED(every=log_interval))
    def log_training_loss(engine):
        pbar.desc = desc.format(engine.state.output)
        pbar.update(log_interval)

    @trainer.on(Events.EPOCH_COMPLETED)
    def log_training_results(engine):
        pbar.refresh()
        evaluator.run(train_loader)
        metrics = evaluator.state.metrics
        avg_accuracy = metrics["accuracy"]
        avg_nll = metrics["nll"]
        tqdm.write(
            "Training Results - Epoch: {}  Avg accuracy: {:.2f} Avg loss: {:.2f}".format(
                engine.state.epoch, avg_accuracy, avg_nll
            )
        )

    @trainer.on(Events.EPOCH_COMPLETED)
    def log_validation_results(engine):
        evaluator.run(val_loader)
        metrics = evaluator.state.metrics
        avg_accuracy = metrics["accuracy"]
        avg_nll = metrics["nll"]
        tqdm.write(
            "Validation Results - Epoch: {}  Avg accuracy: {:.2f} Avg loss: {:.2f}".format(
                engine.state.epoch, avg_accuracy, avg_nll
            )
        )

        pbar.n = pbar.last_print_n = 0

    @trainer.on(Events.EPOCH_COMPLETED | Events.COMPLETED)
    def log_time(engine):
        tqdm.write(
            "{} took {} seconds".format(trainer.last_event_name.name, trainer.state.times[trainer.last_event_name.name])
        )

    trainer.run(train_loader, max_epochs=epochs)
    pbar.close() 
開發者ID:pytorch,項目名稱:ignite,代碼行數:63,代碼來源:mnist.py

示例10: run

# 需要導入模塊: from ignite import metrics [as 別名]
# 或者: from ignite.metrics import Loss [as 別名]
def run(train_batch_size, val_batch_size, epochs, lr, momentum, display_gpu_info):
    train_loader, val_loader = get_data_loaders(train_batch_size, val_batch_size)
    model = Net()
    device = "cpu"

    if torch.cuda.is_available():
        device = "cuda"

    model.to(device)  # Move model before creating optimizer
    optimizer = SGD(model.parameters(), lr=lr, momentum=momentum)
    trainer = create_supervised_trainer(model, optimizer, F.nll_loss, device=device)
    evaluator = create_supervised_evaluator(
        model, metrics={"accuracy": Accuracy(), "nll": Loss(F.nll_loss)}, device=device
    )

    RunningAverage(output_transform=lambda x: x).attach(trainer, "loss")

    if display_gpu_info:
        from ignite.contrib.metrics import GpuInfo

        GpuInfo().attach(trainer, name="gpu")

    pbar = ProgressBar(persist=True)
    pbar.attach(trainer, metric_names="all")

    @trainer.on(Events.EPOCH_COMPLETED)
    def log_training_results(engine):
        evaluator.run(train_loader)
        metrics = evaluator.state.metrics
        avg_accuracy = metrics["accuracy"]
        avg_nll = metrics["nll"]
        pbar.log_message(
            "Training Results - Epoch: {}  Avg accuracy: {:.2f} Avg loss: {:.2f}".format(
                engine.state.epoch, avg_accuracy, avg_nll
            )
        )

    @trainer.on(Events.EPOCH_COMPLETED)
    def log_validation_results(engine):
        evaluator.run(val_loader)
        metrics = evaluator.state.metrics
        avg_accuracy = metrics["accuracy"]
        avg_nll = metrics["nll"]
        pbar.log_message(
            "Validation Results - Epoch: {}  Avg accuracy: {:.2f} Avg loss: {:.2f}".format(
                engine.state.epoch, avg_accuracy, avg_nll
            )
        )

        pbar.n = pbar.last_print_n = 0

    trainer.run(train_loader, max_epochs=epochs) 
開發者ID:pytorch,項目名稱:ignite,代碼行數:54,代碼來源:mnist_with_tqdm_logger.py

示例11: main

# 需要導入模塊: from ignite import metrics [as 別名]
# 或者: from ignite.metrics import Loss [as 別名]
def main(dataset_path, batch_size=256, max_epochs=10):
    assert torch.cuda.is_available()
    assert torch.backends.cudnn.enabled, "NVIDIA/Apex:Amp requires cudnn backend to be enabled."
    torch.backends.cudnn.benchmark = True

    device = "cuda"

    train_loader, test_loader, eval_train_loader = get_train_eval_loaders(dataset_path, batch_size=batch_size)

    model = wide_resnet50_2(num_classes=100).to(device)
    optimizer = SGD(model.parameters(), lr=0.01)
    criterion = CrossEntropyLoss().to(device)

    def train_step(engine, batch):
        x = convert_tensor(batch[0], device, non_blocking=True)
        y = convert_tensor(batch[1], device, non_blocking=True)

        optimizer.zero_grad()

        y_pred = model(x)
        loss = criterion(y_pred, y)
        loss.backward()

        optimizer.step()

        return loss.item()

    trainer = Engine(train_step)
    timer = Timer(average=True)
    timer.attach(trainer, step=Events.EPOCH_COMPLETED)
    ProgressBar(persist=True).attach(trainer, output_transform=lambda out: {"batch loss": out})

    metrics = {"Accuracy": Accuracy(), "Loss": Loss(criterion)}

    evaluator = create_supervised_evaluator(model, metrics=metrics, device=device, non_blocking=True)

    def log_metrics(engine, title):
        for name in metrics:
            print("\t{} {}: {:.2f}".format(title, name, engine.state.metrics[name]))

    @trainer.on(Events.COMPLETED)
    def run_validation(_):
        print("- Mean elapsed time for 1 epoch: {}".format(timer.value()))
        print("- Metrics:")
        with evaluator.add_event_handler(Events.COMPLETED, log_metrics, "Train"):
            evaluator.run(eval_train_loader)

        with evaluator.add_event_handler(Events.COMPLETED, log_metrics, "Test"):
            evaluator.run(test_loader)

    trainer.run(train_loader, max_epochs=max_epochs) 
開發者ID:pytorch,項目名稱:ignite,代碼行數:53,代碼來源:benchmark_fp32.py

示例12: main

# 需要導入模塊: from ignite import metrics [as 別名]
# 或者: from ignite.metrics import Loss [as 別名]
def main(dataset_path, batch_size=256, max_epochs=10, opt="O1"):
    assert torch.cuda.is_available()
    assert torch.backends.cudnn.enabled, "NVIDIA/Apex:Amp requires cudnn backend to be enabled."
    torch.backends.cudnn.benchmark = True

    device = "cuda"

    train_loader, test_loader, eval_train_loader = get_train_eval_loaders(dataset_path, batch_size=batch_size)

    model = wide_resnet50_2(num_classes=100).to(device)
    optimizer = SGD(model.parameters(), lr=0.01)
    criterion = CrossEntropyLoss().to(device)

    model, optimizer = amp.initialize(model, optimizer, opt_level=opt)

    def train_step(engine, batch):
        x = convert_tensor(batch[0], device, non_blocking=True)
        y = convert_tensor(batch[1], device, non_blocking=True)

        optimizer.zero_grad()

        y_pred = model(x)
        loss = criterion(y_pred, y)

        with amp.scale_loss(loss, optimizer) as scaled_loss:
            scaled_loss.backward()

        optimizer.step()

        return loss.item()

    trainer = Engine(train_step)
    timer = Timer(average=True)
    timer.attach(trainer, step=Events.EPOCH_COMPLETED)
    ProgressBar(persist=True).attach(trainer, output_transform=lambda out: {"batch loss": out})

    metrics = {"Accuracy": Accuracy(), "Loss": Loss(criterion)}

    evaluator = create_supervised_evaluator(model, metrics=metrics, device=device, non_blocking=True)

    def log_metrics(engine, title):
        for name in metrics:
            print("\t{} {}: {:.2f}".format(title, name, engine.state.metrics[name]))

    @trainer.on(Events.COMPLETED)
    def run_validation(_):
        print("- Mean elapsed time for 1 epoch: {}".format(timer.value()))
        print("- Metrics:")
        with evaluator.add_event_handler(Events.COMPLETED, log_metrics, "Train"):
            evaluator.run(eval_train_loader)

        with evaluator.add_event_handler(Events.COMPLETED, log_metrics, "Test"):
            evaluator.run(test_loader)

    trainer.run(train_loader, max_epochs=max_epochs) 
開發者ID:pytorch,項目名稱:ignite,代碼行數:57,代碼來源:benchmark_nvidia_apex.py


注:本文中的ignite.metrics.Loss方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。