當前位置: 首頁>>代碼示例>>Python>>正文


Python metrics.Accuracy方法代碼示例

本文整理匯總了Python中ignite.metrics.Accuracy方法的典型用法代碼示例。如果您正苦於以下問題:Python metrics.Accuracy方法的具體用法?Python metrics.Accuracy怎麽用?Python metrics.Accuracy使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在ignite.metrics的用法示例。


在下文中一共展示了metrics.Accuracy方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_binary_wrong_inputs

# 需要導入模塊: from ignite import metrics [as 別名]
# 或者: from ignite.metrics import Accuracy [as 別名]
def test_binary_wrong_inputs():
    acc = Accuracy()

    with pytest.raises(ValueError):
        # y has not only 0 or 1 values
        acc.update((torch.randint(0, 2, size=(10,)).long(), torch.arange(0, 10).long()))

    with pytest.raises(ValueError):
        # y_pred values are not thresholded to 0, 1 values
        acc.update((torch.rand(10,), torch.randint(0, 2, size=(10,)).long()))

    with pytest.raises(ValueError):
        # incompatible shapes
        acc.update((torch.randint(0, 2, size=(10,)).long(), torch.randint(0, 2, size=(10, 5)).long()))

    with pytest.raises(ValueError):
        # incompatible shapes
        acc.update((torch.randint(0, 2, size=(10, 5, 6)).long(), torch.randint(0, 2, size=(10,)).long()))

    with pytest.raises(ValueError):
        # incompatible shapes
        acc.update((torch.randint(0, 2, size=(10,)).long(), torch.randint(0, 2, size=(10, 5, 6)).long())) 
開發者ID:pytorch,項目名稱:ignite,代碼行數:24,代碼來源:test_accuracy.py

示例2: test_multilabel_wrong_inputs

# 需要導入模塊: from ignite import metrics [as 別名]
# 或者: from ignite.metrics import Accuracy [as 別名]
def test_multilabel_wrong_inputs():
    acc = Accuracy(is_multilabel=True)

    with pytest.raises(ValueError):
        # incompatible shapes
        acc.update((torch.randint(0, 2, size=(10,)), torch.randint(0, 2, size=(10,)).long()))

    with pytest.raises(ValueError):
        # incompatible y_pred
        acc.update((torch.rand(10, 5), torch.randint(0, 2, size=(10, 5)).long()))

    with pytest.raises(ValueError):
        # incompatible y
        acc.update((torch.randint(0, 5, size=(10, 5, 6)), torch.rand(10)))

    with pytest.raises(ValueError):
        # incompatible binary shapes
        acc.update((torch.randint(0, 2, size=(10, 1)), torch.randint(0, 2, size=(10, 1)).long())) 
開發者ID:pytorch,項目名稱:ignite,代碼行數:20,代碼來源:test_accuracy.py

示例3: __init__

# 需要導入模塊: from ignite import metrics [as 別名]
# 或者: from ignite.metrics import Accuracy [as 別名]
def __init__(self,
                 model: nn.Module,
                 dataset_splits: DatasetSplits,
                 loss: nn.Module,
                 optimizer: optim.Optimizer,
                 metrics: Dict[str, Metric],
                 device: str = None,
                 num_epochs: int = 1,
                 seed: int = None,
                 cuda: bool = None,
                 loss_accumulation_steps: int = 4,
                 scheduler: Any = None,
                 regularizer: RegularizerABC = None,
                 gradient_clipping: float = 1.0,
                 output_transform=None,
                 tensorboard_logs: str = None,
                 clf_loss_coef: float = 0.1,
                 lm_loss_coef: float = 0.9
                 ):

        super().__init__(
            model=model,
            dataset_splits=dataset_splits,
            loss=loss,
            optimizer=optimizer,
            metrics=metrics,
            device=device,
            num_epochs=num_epochs,
            seed=seed,
            cuda=cuda,
            loss_accumulation_steps=loss_accumulation_steps,
            scheduler=scheduler,
            regularizer=regularizer,
            gradient_clipping=gradient_clipping,
            output_transform=output_transform,
            tensorboard_logs=tensorboard_logs)
        self.clf_loss_coef = clf_loss_coef
        self.lm_loss_coef = lm_loss_coef
        RunningAverage(Accuracy(output_transform=lambda x: (x[0], x[1]))).attach(self.trainer, 'acc') 
開發者ID:feedly,項目名稱:transfer-nlp,代碼行數:41,代碼來源:trainers.py

示例4: create_supervised_evaluator

# 需要導入模塊: from ignite import metrics [as 別名]
# 或者: from ignite.metrics import Accuracy [as 別名]
def create_supervised_evaluator(self):

        if self.device:
            self.model.to(self.device)

        engine = Engine(self.infer_engine)

        Accuracy().attach(engine, "accuracy")

        return engine 
開發者ID:feedly,項目名稱:transfer-nlp,代碼行數:12,代碼來源:trainers.py

示例5: attach_pbar_and_metrics

# 需要導入模塊: from ignite import metrics [as 別名]
# 或者: from ignite.metrics import Accuracy [as 別名]
def attach_pbar_and_metrics(trainer, evaluator):
    loss_metric = Average(output_transform=lambda output: output["loss"])
    accuracy_metric = Accuracy(output_transform=lambda output: (output["logit"], output["label"]))
    pbar = ProgressBar()
    loss_metric.attach(trainer, "loss")
    accuracy_metric.attach(trainer, "accuracy")
    accuracy_metric.attach(evaluator, "accuracy")
    pbar.attach(trainer) 
開發者ID:amzn,項目名稱:xfer,代碼行數:10,代碼來源:util.py

示例6: objective

# 需要導入模塊: from ignite import metrics [as 別名]
# 或者: from ignite.metrics import Accuracy [as 別名]
def objective(trial):
    # Create a convolutional neural network.
    model = Net(trial)

    device = "cpu"
    if torch.cuda.is_available():
        device = "cuda"
        model.cuda(device)

    optimizer = Adam(model.parameters())
    trainer = create_supervised_trainer(model, optimizer, F.nll_loss, device=device)
    evaluator = create_supervised_evaluator(model, metrics={"accuracy": Accuracy()}, device=device)

    # Register a pruning handler to the evaluator.
    pruning_handler = optuna.integration.PyTorchIgnitePruningHandler(trial, "accuracy", trainer)
    evaluator.add_event_handler(Events.COMPLETED, pruning_handler)

    # Load MNIST dataset.
    train_loader, val_loader = get_data_loaders(TRAIN_BATCH_SIZE, VAL_BATCH_SIZE)

    @trainer.on(Events.EPOCH_COMPLETED)
    def log_results(engine):
        evaluator.run(val_loader)
        validation_acc = evaluator.state.metrics["accuracy"]
        print("Epoch: {} Validation accuracy: {:.2f}".format(engine.state.epoch, validation_acc))

    trainer.run(train_loader, max_epochs=EPOCHS)

    evaluator.run(val_loader)
    return evaluator.state.metrics["accuracy"] 
開發者ID:optuna,項目名稱:optuna,代碼行數:32,代碼來源:pytorch_ignite_simple.py

示例7: test_no_update

# 需要導入模塊: from ignite import metrics [as 別名]
# 或者: from ignite.metrics import Accuracy [as 別名]
def test_no_update():
    acc = Accuracy()
    with pytest.raises(NotComputableError):
        acc.compute() 
開發者ID:pytorch,項目名稱:ignite,代碼行數:6,代碼來源:test_accuracy.py

示例8: test__check_shape

# 需要導入模塊: from ignite import metrics [as 別名]
# 或者: from ignite.metrics import Accuracy [as 別名]
def test__check_shape():
    acc = Accuracy()

    with pytest.raises(ValueError):
        acc._check_shape((torch.randint(0, 2, size=(10, 1, 5, 12)).long(), torch.randint(0, 2, size=(10, 5, 6)).long()))

    with pytest.raises(ValueError):
        acc._check_shape((torch.randint(0, 2, size=(10, 1, 6)).long(), torch.randint(0, 2, size=(10, 5, 6)).long()))

    with pytest.raises(ValueError):
        acc._check_shape((torch.randint(0, 2, size=(10, 1)).long(), torch.randint(0, 2, size=(10, 5)).long())) 
開發者ID:pytorch,項目名稱:ignite,代碼行數:13,代碼來源:test_accuracy.py

示例9: test_binary_input_N

# 需要導入模塊: from ignite import metrics [as 別名]
# 或者: from ignite.metrics import Accuracy [as 別名]
def test_binary_input_N():
    # Binary accuracy on input of shape (N, 1) or (N, )
    def _test():
        acc = Accuracy()

        y_pred = torch.randint(0, 2, size=(10,)).long()
        y = torch.randint(0, 2, size=(10,)).long()
        acc.update((y_pred, y))
        np_y = y.numpy().ravel()
        np_y_pred = y_pred.numpy().ravel()
        assert acc._type == "binary"
        assert isinstance(acc.compute(), float)
        assert accuracy_score(np_y, np_y_pred) == pytest.approx(acc.compute())

        # Batched Updates
        acc.reset()
        y_pred = torch.randint(0, 2, size=(100,)).long()
        y = torch.randint(0, 2, size=(100,)).long()

        n_iters = 16
        batch_size = y.shape[0] // n_iters + 1

        for i in range(n_iters):
            idx = i * batch_size
            acc.update((y_pred[idx : idx + batch_size], y[idx : idx + batch_size]))

        np_y = y.numpy().ravel()
        np_y_pred = y_pred.numpy().ravel()
        assert acc._type == "binary"
        assert isinstance(acc.compute(), float)
        assert accuracy_score(np_y, np_y_pred) == pytest.approx(acc.compute())

    # check multiple random inputs as random exact occurencies are rare
    for _ in range(10):
        _test() 
開發者ID:pytorch,項目名稱:ignite,代碼行數:37,代碼來源:test_accuracy.py

示例10: test_multiclass_wrong_inputs

# 需要導入模塊: from ignite import metrics [as 別名]
# 或者: from ignite.metrics import Accuracy [as 別名]
def test_multiclass_wrong_inputs():
    acc = Accuracy()

    with pytest.raises(ValueError):
        # incompatible shapes
        acc.update((torch.rand(10, 5, 4), torch.randint(0, 2, size=(10,)).long()))

    with pytest.raises(ValueError):
        # incompatible shapes
        acc.update((torch.rand(10, 5, 6), torch.randint(0, 5, size=(10, 5)).long()))

    with pytest.raises(ValueError):
        # incompatible shapes
        acc.update((torch.rand(10), torch.randint(0, 5, size=(10, 5, 6)).long())) 
開發者ID:pytorch,項目名稱:ignite,代碼行數:16,代碼來源:test_accuracy.py

示例11: test_incorrect_type

# 需要導入模塊: from ignite import metrics [as 別名]
# 或者: from ignite.metrics import Accuracy [as 別名]
def test_incorrect_type():
    acc = Accuracy()

    # Start as binary data
    y_pred = torch.randint(0, 2, size=(4,))
    y = torch.ones(4).long()
    acc.update((y_pred, y))

    # And add a multiclass data
    y_pred = torch.rand(4, 4)
    y = torch.ones(4).long()

    with pytest.raises(RuntimeError):
        acc.update((y_pred, y)) 
開發者ID:pytorch,項目名稱:ignite,代碼行數:16,代碼來源:test_accuracy.py

示例12: training

# 需要導入模塊: from ignite import metrics [as 別名]
# 或者: from ignite.metrics import Accuracy [as 別名]
def training(local_rank, config):

    # Setup dataflow and
    train_loader, val_loader = get_dataflow(config)
    model, optimizer, criterion, lr_scheduler = initialize(config)

    # Setup model trainer and evaluator
    trainer = create_trainer(model, optimizer, criterion, lr_scheduler, config)
    evaluator = create_supervised_evaluator(model, metrics={"accuracy": Accuracy()}, device=idist.device())

    # Run model evaluation every 3 epochs and show results
    @trainer.on(Events.EPOCH_COMPLETED(every=3))
    def evaluate_model():
        state = evaluator.run(val_loader)
        if idist.get_rank() == 0:
            print(state.metrics)

    # Setup tensorboard experiment tracking
    if idist.get_rank() == 0:
        tb_logger = common.setup_tb_logging(
            config.get("output_path", "output"), trainer, optimizer, evaluators={"validation": evaluator},
        )

    trainer.run(train_loader, max_epochs=config.get("max_epochs", 3))

    if idist.get_rank() == 0:
        tb_logger.close()


# slide 3 ####################################################################

# Simply run everything on your infrastructure


# --- Single computation device ---
# $ python main.py
# 
開發者ID:pytorch,項目名稱:ignite,代碼行數:39,代碼來源:teaser.py

示例13: run_inference_test

# 需要導入模塊: from ignite import metrics [as 別名]
# 或者: from ignite.metrics import Accuracy [as 別名]
def run_inference_test(root_dir, model_file, device=torch.device("cuda:0")):
    images = sorted(glob(os.path.join(root_dir, "im*.nii.gz")))
    segs = sorted(glob(os.path.join(root_dir, "seg*.nii.gz")))
    val_files = [{"image": img, "label": seg} for img, seg in zip(images, segs)]

    # define transforms for image and segmentation
    val_transforms = Compose(
        [
            LoadNiftid(keys=["image", "label"]),
            AsChannelFirstd(keys=["image", "label"], channel_dim=-1),
            ScaleIntensityd(keys=["image", "label"]),
            ToTensord(keys=["image", "label"]),
        ]
    )

    # create a validation data loader
    val_ds = monai.data.Dataset(data=val_files, transform=val_transforms)
    val_loader = monai.data.DataLoader(val_ds, batch_size=1, num_workers=4)

    # create UNet, DiceLoss and Adam optimizer
    net = monai.networks.nets.UNet(
        dimensions=3,
        in_channels=1,
        out_channels=1,
        channels=(16, 32, 64, 128, 256),
        strides=(2, 2, 2, 2),
        num_res_units=2,
    ).to(device)

    val_post_transforms = Compose(
        [
            Activationsd(keys="pred", sigmoid=True),
            AsDiscreted(keys="pred", threshold_values=True),
            KeepLargestConnectedComponentd(keys="pred", applied_labels=[1]),
        ]
    )
    val_handlers = [
        StatsHandler(output_transform=lambda x: None),
        CheckpointLoader(load_path=f"{model_file}", load_dict={"net": net}),
        SegmentationSaver(
            output_dir=root_dir,
            batch_transform=lambda batch: batch["image_meta_dict"],
            output_transform=lambda output: output["pred"],
        ),
    ]

    evaluator = SupervisedEvaluator(
        device=device,
        val_data_loader=val_loader,
        network=net,
        inferer=SlidingWindowInferer(roi_size=(96, 96, 96), sw_batch_size=4, overlap=0.5),
        post_transform=val_post_transforms,
        key_val_metric={
            "val_mean_dice": MeanDice(include_background=True, output_transform=lambda x: (x["pred"], x["label"]))
        },
        additional_metrics={"val_acc": Accuracy(output_transform=lambda x: (x["pred"], x["label"]))},
        val_handlers=val_handlers,
    )
    evaluator.run()

    return evaluator.state.best_metric 
開發者ID:Project-MONAI,項目名稱:MONAI,代碼行數:63,代碼來源:test_integration_workflows.py

示例14: train

# 需要導入模塊: from ignite import metrics [as 別名]
# 或者: from ignite.metrics import Accuracy [as 別名]
def train():

    writer = SummaryWriter()

    net, optimiser, lr_scheduler, train_loader, val_loader = cifar10_experiment()

    # Pre-training pruning using SKIP
    keep_masks = SNIP(net, 0.05, train_loader, device)  # TODO: shuffle?
    apply_prune_mask(net, keep_masks)

    trainer = create_supervised_trainer(net, optimiser, F.nll_loss, device)
    evaluator = create_supervised_evaluator(net, {
        'accuracy': Accuracy(),
        'nll': Loss(F.nll_loss)
    }, device)

    pbar = ProgressBar()
    pbar.attach(trainer)

    @trainer.on(Events.ITERATION_COMPLETED)
    def log_training_loss(engine):
        lr_scheduler.step()
        iter_in_epoch = (engine.state.iteration - 1) % len(train_loader) + 1
        if engine.state.iteration % LOG_INTERVAL == 0:
            # pbar.log_message("Epoch[{}] Iteration[{}/{}] Loss: {:.2f}"
            #       "".format(engine.state.epoch, iter_in_epoch, len(train_loader), engine.state.output))
            writer.add_scalar("training/loss", engine.state.output,
                              engine.state.iteration)

    @trainer.on(Events.EPOCH_COMPLETED)
    def log_epoch(engine):
        evaluator.run(val_loader)

        metrics = evaluator.state.metrics
        avg_accuracy = metrics['accuracy']
        avg_nll = metrics['nll']

        # pbar.log_message("Validation Results - Epoch: {}  Avg accuracy: {:.2f} Avg loss: {:.2f}"
        #       .format(engine.state.epoch, avg_accuracy, avg_nll))

        writer.add_scalar("validation/loss", avg_nll, engine.state.iteration)
        writer.add_scalar("validation/accuracy", avg_accuracy,
                          engine.state.iteration)

    trainer.run(train_loader, EPOCHS)

    # Let's look at the final weights
    # for name, param in net.named_parameters():
    #     if name.endswith('weight'):
    #         writer.add_histogram(name, param)

    writer.close() 
開發者ID:mi-lad,項目名稱:snip,代碼行數:54,代碼來源:train.py

示例15: run

# 需要導入模塊: from ignite import metrics [as 別名]
# 或者: from ignite.metrics import Accuracy [as 別名]
def run(train_batch_size, val_batch_size, epochs, lr, momentum, log_interval, log_dir):
    train_loader, val_loader = get_data_loaders(train_batch_size, val_batch_size)
    model = Net()
    writer = SummaryWriter(log_dir=log_dir)
    device = "cpu"

    if torch.cuda.is_available():
        device = "cuda"

    model.to(device)  # Move model before creating optimizer
    optimizer = SGD(model.parameters(), lr=lr, momentum=momentum)
    criterion = nn.NLLLoss()
    trainer = create_supervised_trainer(model, optimizer, criterion, device=device)

    val_metrics = {"accuracy": Accuracy(), "nll": Loss(criterion)}
    evaluator = create_supervised_evaluator(model, metrics=val_metrics, device=device)

    @trainer.on(Events.ITERATION_COMPLETED(every=log_interval))
    def log_training_loss(engine):
        print(
            "Epoch[{}] Iteration[{}/{}] Loss: {:.2f}"
            "".format(engine.state.epoch, engine.state.iteration, len(train_loader), engine.state.output)
        )
        writer.add_scalar("training/loss", engine.state.output, engine.state.iteration)

    @trainer.on(Events.EPOCH_COMPLETED)
    def log_training_results(engine):
        evaluator.run(train_loader)
        metrics = evaluator.state.metrics
        avg_accuracy = metrics["accuracy"]
        avg_nll = metrics["nll"]
        print(
            "Training Results - Epoch: {}  Avg accuracy: {:.2f} Avg loss: {:.2f}".format(
                engine.state.epoch, avg_accuracy, avg_nll
            )
        )
        writer.add_scalar("training/avg_loss", avg_nll, engine.state.epoch)
        writer.add_scalar("training/avg_accuracy", avg_accuracy, engine.state.epoch)

    @trainer.on(Events.EPOCH_COMPLETED)
    def log_validation_results(engine):
        evaluator.run(val_loader)
        metrics = evaluator.state.metrics
        avg_accuracy = metrics["accuracy"]
        avg_nll = metrics["nll"]
        print(
            "Validation Results - Epoch: {}  Avg accuracy: {:.2f} Avg loss: {:.2f}".format(
                engine.state.epoch, avg_accuracy, avg_nll
            )
        )
        writer.add_scalar("valdation/avg_loss", avg_nll, engine.state.epoch)
        writer.add_scalar("valdation/avg_accuracy", avg_accuracy, engine.state.epoch)

    # kick everything off
    trainer.run(train_loader, max_epochs=epochs)

    writer.close() 
開發者ID:pytorch,項目名稱:ignite,代碼行數:59,代碼來源:mnist_with_tensorboard.py


注:本文中的ignite.metrics.Accuracy方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。