當前位置: 首頁>>代碼示例>>Python>>正文


Python numpy.arrays方法代碼示例

本文整理匯總了Python中hypothesis.extra.numpy.arrays方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.arrays方法的具體用法?Python numpy.arrays怎麽用?Python numpy.arrays使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在hypothesis.extra.numpy的用法示例。


在下文中一共展示了numpy.arrays方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _strategy_2d_array

# 需要導入模塊: from hypothesis.extra import numpy [as 別名]
# 或者: from hypothesis.extra.numpy import arrays [as 別名]
def _strategy_2d_array(dtype, minval=0, maxval=None, **kwargs):
    if 'min_side' in kwargs:
        min_side = kwargs.pop('min_side')
    else:
        min_side = 1

    if 'max_side' in kwargs:
        max_side = kwargs.pop('max_side')
    else:
        max_side = None

    if dtype is np.int:
        elems = st.integers(minval, maxval, **kwargs)
    elif dtype is np.float:
        elems = st.floats(minval, maxval, **kwargs)
    elif dtype is np.str:
        elems = st.text(min_size=minval, max_size=maxval, **kwargs)
    else:
        raise ValueError('no elements strategy for dtype', dtype)

    return arrays(dtype, array_shapes(2, 2, min_side, max_side), elements=elems) 
開發者ID:WZBSocialScienceCenter,項目名稱:tmtoolkit,代碼行數:23,代碼來源:_testtools.py

示例2: test_Axis_iterator_multiple_items_0d

# 需要導入模塊: from hypothesis.extra import numpy [as 別名]
# 或者: from hypothesis.extra.numpy import arrays [as 別名]
def test_Axis_iterator_multiple_items_0d():
    name = "some_name"
    label = "some_label"
    unit = "some_unit"

    arrays = [np.array(1), np.array(2), np.array(3)]
    axis = Axis(arrays[0], name=name, label=label, unit=unit)
    axis.append(Axis(arrays[1], name=name, label=label, unit=unit))
    axis.append(Axis(arrays[2], name=name, label=label, unit=unit))

    for ax, arr in zip(axis, arrays):
        assert ax is not axis
        assert ax.name == name
        assert ax.label == label
        assert ax.unit == unit
        np.testing.assert_array_equal(ax, arr) 
開發者ID:GoLP-IST,項目名稱:nata,代碼行數:18,代碼來源:test_axes.py

示例3: numpy_video

# 需要導入模塊: from hypothesis.extra import numpy [as 別名]
# 或者: from hypothesis.extra.numpy import arrays [as 別名]
def numpy_video(
    draw,
    min_length=1,
    max_length=3,
    min_width=1,
    max_width=10,
    min_height=1,
    max_height=10,
    mode=None,
):
    length, height, width = draw(
        video_shape(
            min_length, max_length, min_height, max_height, min_width, max_width
        )
    )
    if mode is None:
        mode = draw(st.sampled_from(["RGB", "L"]))
    if mode == "RGB":
        array_st = arrays(dtype=np.uint8, shape=(length, width, height, 3))
    else:
        array_st = arrays(dtype=np.uint8, shape=(length, width, height))
    return draw(array_st) 
開發者ID:torchvideo,項目名稱:torchvideo,代碼行數:24,代碼來源:strategies.py

示例4: test_padding

# 需要導入模塊: from hypothesis.extra import numpy [as 別名]
# 或者: from hypothesis.extra.numpy import arrays [as 別名]
def test_padding(ndim: int, data: st.DataObject):
    """Ensure that convolving a padding-only image with a commensurate kernel yields the single entry: 0"""
    padding = data.draw(
        st.integers(1, 3) | st.tuples(*[st.integers(1, 3)] * ndim), label="padding"
    )
    x = Tensor(
        data.draw(
            hnp.arrays(shape=(1, 1) + (0,) * ndim, dtype=float, elements=st.floats()),
            label="x",
        )
    )
    pad_tuple = padding if isinstance(padding, tuple) else (padding,) * ndim
    kernel = data.draw(
        hnp.arrays(
            shape=(1, 1) + tuple(2 * p for p in pad_tuple),
            dtype=float,
            elements=st.floats(allow_nan=False, allow_infinity=False),
        )
    )
    out = conv_nd(x, kernel, padding=padding, stride=1)
    assert out.shape == (1,) * x.ndim
    assert out.item() == 0.0

    out.sum().backward()
    assert x.grad.shape == x.shape 
開發者ID:rsokl,項目名稱:MyGrad,代碼行數:27,代碼來源:test_conv.py

示例5: test_negative_log_likelihood

# 需要導入模塊: from hypothesis.extra import numpy [as 別名]
# 或者: from hypothesis.extra.numpy import arrays [as 別名]
def test_negative_log_likelihood(data: st.DataObject, labels_as_tensor: bool):
    s = data.draw(
        hnp.arrays(
            shape=hnp.array_shapes(max_side=10, min_dims=2, max_dims=2),
            dtype=float,
            elements=st.floats(-100, 100),
        )
    )
    y_true = data.draw(
        hnp.arrays(
            shape=(s.shape[0],),
            dtype=hnp.integer_dtypes(),
            elements=st.integers(min_value=0, max_value=s.shape[1] - 1),
        ).map(Tensor if labels_as_tensor else lambda x: x)
    )
    scores = Tensor(s)
    nll = negative_log_likelihood(mg.log(mg.nnet.softmax(scores)), y_true)
    nll.backward()

    cross_entropy_scores = Tensor(s)
    ce = softmax_crossentropy(cross_entropy_scores, y_true)
    ce.backward()

    assert_allclose(nll.data, ce.data, atol=1e-5, rtol=1e-5)
    assert_allclose(scores.grad, cross_entropy_scores.grad, atol=1e-5, rtol=1e-5) 
開發者ID:rsokl,項目名稱:MyGrad,代碼行數:27,代碼來源:test_negative_log_likelihood.py

示例6: arrays

# 需要導入模塊: from hypothesis.extra import numpy [as 別名]
# 或者: from hypothesis.extra.numpy import arrays [as 別名]
def arrays(self, i: int) -> st.SearchStrategy:
        """
        Hypothesis search strategy for drawing an array y to be passed to f(x, ..., y_i,...).
        By default, y is drawn to have a shape that is broadcast-compatible with x.

        Parameters
        ----------
        i : int
            The argument index-location of y in the signature of f.

        Returns
        -------
        hypothesis.searchstrategy.SearchStrategy"""
        return hnp.arrays(
            shape=self.index_to_arr_shapes.get(i),
            dtype=float,
            elements=st.floats(*self.index_to_bnds.get(i, self.default_bnds)),
        ) 
開發者ID:rsokl,項目名稱:MyGrad,代碼行數:20,代碼來源:uber.py

示例7: test_upcast_roundtrip

# 需要導入模塊: from hypothesis.extra import numpy [as 別名]
# 或者: from hypothesis.extra.numpy import arrays [as 別名]
def test_upcast_roundtrip(type_strategy, data: st.DataObject):
    thin, wide = data.draw(
        st.tuples(type_strategy, type_strategy).map(
            lambda x: sorted(x, key=lambda y: np.dtype(y).itemsize)
        )
    )
    orig_tensor = data.draw(
        hnp.arrays(
            dtype=thin,
            shape=hnp.array_shapes(),
            elements=hnp.from_dtype(thin).filter(np.isfinite),
        ).map(Tensor)
    )

    roundtripped_tensor = orig_tensor.astype(wide).astype(thin)
    assert_array_equal(orig_tensor, roundtripped_tensor) 
開發者ID:rsokl,項目名稱:MyGrad,代碼行數:18,代碼來源:test_astype.py

示例8: test_reduce_broadcast_keepdim

# 需要導入模塊: from hypothesis.extra import numpy [as 別名]
# 或者: from hypothesis.extra.numpy import arrays [as 別名]
def test_reduce_broadcast_keepdim(var_shape, data):
    """ example broadcasting: (2, 1, 4) -> (2, 5, 4)"""
    grad = data.draw(
        hnp.arrays(
            dtype=float,
            shape=broadcastable_shapes(
                shape=var_shape, min_dims=len(var_shape), max_dims=len(var_shape)
            ),
            elements=st.just(1.0),
        ),
        label="grad",
    )

    reduced_grad = reduce_broadcast(grad=grad, var_shape=var_shape)
    assert reduced_grad.shape == tuple(
        i if i < j else j for i, j in zip(var_shape, grad.shape)
    )
    assert (i == 1 for i, j in zip(var_shape, grad.shape) if i < j)
    sum_axes = tuple(n for n, (i, j) in enumerate(zip(var_shape, grad.shape)) if i != j)
    assert_allclose(actual=reduced_grad, desired=grad.sum(axis=sum_axes, keepdims=True)) 
開發者ID:rsokl,項目名稱:MyGrad,代碼行數:22,代碼來源:test_utils.py

示例9: test_scalars_dict_update

# 需要導入模塊: from hypothesis.extra import numpy [as 別名]
# 或者: from hypothesis.extra.numpy import arrays [as 別名]
def test_scalars_dict_update():
    mesh = examples.load_uniform()
    n = len(mesh.point_arrays)
    arrays = {
        'foo': np.arange(mesh.n_points),
        'rand': np.random.random(mesh.n_points)
    }
    mesh.point_arrays.update(arrays)
    assert 'foo' in mesh.array_names
    assert 'rand' in mesh.array_names
    assert len(mesh.point_arrays) == n + 2

    # Test update from Table
    table = pyvista.Table(arrays)
    mesh = examples.load_uniform()
    mesh.point_arrays.update(table)
    assert 'foo' in mesh.array_names
    assert 'rand' in mesh.array_names
    assert len(mesh.point_arrays) == n + 2 
開發者ID:pyvista,項目名稱:pyvista,代碼行數:21,代碼來源:test_common.py

示例10: test_draw_bs_pairs_linreg_nan

# 需要導入模塊: from hypothesis.extra import numpy [as 別名]
# 或者: from hypothesis.extra.numpy import arrays [as 別名]
def test_draw_bs_pairs_linreg_nan():
    x = np.array([])
    y = np.array([])
    with pytest.raises(RuntimeError) as excinfo:
        dcst.draw_bs_pairs_linreg(x, y, size=1)
    excinfo.match('Arrays must have at least 2 mutual non-NaN entries.')

    x = np.array([np.nan])
    y = np.array([np.nan])
    with pytest.raises(RuntimeError) as excinfo:
        dcst.draw_bs_pairs_linreg(x, y, size=1)
    excinfo.match('Arrays must have at least 2 mutual non-NaN entries.')

    x = np.array([np.nan, 1])
    y = np.array([1, np.nan])
    with pytest.raises(RuntimeError) as excinfo:
        dcst.draw_bs_pairs_linreg(x, y, size=1)
    excinfo.match('Arrays must have at least 2 mutual non-NaN entries.')

    x = np.array([0, 1, 5])
    y = np.array([1, np.inf, 3])
    with pytest.raises(RuntimeError) as excinfo:
        dcst.draw_bs_pairs_linreg(x, y, size=1)
    excinfo.match('All entries in arrays must be finite.') 
開發者ID:justinbois,項目名稱:dc_stat_think,代碼行數:26,代碼來源:test_dc_stat_think.py

示例11: test_pearson_r_edge

# 需要導入模塊: from hypothesis.extra import numpy [as 別名]
# 或者: from hypothesis.extra.numpy import arrays [as 別名]
def test_pearson_r_edge():
    x = np.array([])
    y = np.array([])
    with pytest.raises(RuntimeError) as excinfo:
        dcst.pearson_r(x, y)
    excinfo.match('Arrays must have at least 2 mutual non-NaN entries.')

    x = np.array([np.nan])
    y = np.array([np.nan])
    with pytest.raises(RuntimeError) as excinfo:
        dcst.pearson_r(x, y)
    excinfo.match('Arrays must have at least 2 mutual non-NaN entries.')

    x = np.array([np.nan, 1])
    y = np.array([1, np.nan])
    with pytest.raises(RuntimeError) as excinfo:
        dcst.pearson_r(x, y)
    excinfo.match('Arrays must have at least 2 mutual non-NaN entries.')

    x = np.array([0, 1, 5])
    y = np.array([1, np.inf, 3])
    with pytest.raises(RuntimeError) as excinfo:
        dcst.pearson_r(x, y)
    excinfo.match('All entries in arrays must be finite.') 
開發者ID:justinbois,項目名稱:dc_stat_think,代碼行數:26,代碼來源:test_dc_stat_think.py

示例12: test_tabulations

# 需要導入模塊: from hypothesis.extra import numpy [as 別名]
# 或者: from hypothesis.extra.numpy import arrays [as 別名]
def test_tabulations():
    assert np.allclose(tabulation[Delhommeau_f90][2][:, :, 0, 0],
                       tabulation[XieDelhommeau_f90][2][:, :, 0, 0])
    assert np.allclose(tabulation[Delhommeau_f90][2][:, :, 1, 0],
                       tabulation[XieDelhommeau_f90][2][:, :, 1, 0])
    assert np.allclose(tabulation[Delhommeau_f90][2][:, :, 1, 1],
                       tabulation[XieDelhommeau_f90][2][:, :, 1, 1])

    r_range = tabulation[Delhommeau_f90][0]
    Z_range = tabulation[Delhommeau_f90][1]

    # Make 2D arrays
    r = r_range[:, None] * np.ones_like(Z_range)[None, :]
    Z = np.ones_like(r_range)[:, None] * Z_range[None, :]
    R1 = np.sqrt(np.square(r) + np.square(Z))

    # Compare Z1, for great values of Z, where both methods are as accurate
    Del = tabulation[Delhommeau_f90][2][:, :, 0, 1] - pi/R1
    Xie = tabulation[XieDelhommeau_f90][2][:, :, 0, 1]
    assert np.allclose(Del[abs(Z) > 1], Xie[abs(Z) > 1], atol=1e-3) 
開發者ID:mancellin,項目名稱:capytaine,代碼行數:22,代碼來源:test_bem_green_functions.py

示例13: to_min_max

# 需要導入模塊: from hypothesis.extra import numpy [as 別名]
# 或者: from hypothesis.extra.numpy import arrays [as 別名]
def to_min_max(arr: np.ndarray) -> st.SearchStrategy:
    bnd_shape = hnp.broadcastable_shapes(
        shape=arr.shape, max_dims=arr.ndim, max_side=min(arr.shape) if arr.ndim else 1
    )
    bnd_strat = hnp.arrays(
        shape=bnd_shape, elements=st.floats(-1e6, 1e6), dtype=np.float64
    )
    return st.fixed_dictionaries(dict(a_min=bnd_strat, a_max=bnd_strat)) 
開發者ID:rsokl,項目名稱:MyGrad,代碼行數:10,代碼來源:test_misc.py

示例14: test_multiclass_hinge

# 需要導入模塊: from hypothesis.extra import numpy [as 別名]
# 或者: from hypothesis.extra.numpy import arrays [as 別名]
def test_multiclass_hinge(data):
    """Test the built-in implementation of multiclass hinge
    against the pure mygrad version"""
    s = data.draw(
        hnp.arrays(
            shape=hnp.array_shapes(max_side=10, min_dims=2, max_dims=2),
            dtype=float,
            elements=st.floats(-100, 100),
        )
    )
    loss = data.draw(
        hnp.arrays(
            shape=(s.shape[0],),
            dtype=hnp.integer_dtypes(),
            elements=st.integers(min_value=0, max_value=s.shape[1] - 1),
        )
    )
    hinge_scores = Tensor(s)
    hinge_loss = multiclass_hinge(hinge_scores, loss, constant=False)
    hinge_loss.backward()

    mygrad_scores = Tensor(s)
    correct_labels = (range(len(loss)), loss)
    correct_class_scores = mygrad_scores[correct_labels]  # Nx1

    Lij = mygrad_scores - correct_class_scores[:, np.newaxis] + 1.0  # NxC margins
    Lij[Lij <= 0] = 0
    Lij[correct_labels] = 0

    mygrad_loss = Lij.sum() / mygrad_scores.shape[0]
    mygrad_loss.backward()
    assert_allclose(hinge_loss.data, mygrad_loss.data)
    assert_allclose(mygrad_scores.grad, hinge_scores.grad) 
開發者ID:rsokl,項目名稱:MyGrad,代碼行數:35,代碼來源:test_hinge.py

示例15: test_softmax_focal_loss

# 需要導入模塊: from hypothesis.extra import numpy [as 別名]
# 或者: from hypothesis.extra.numpy import arrays [as 別名]
def test_softmax_focal_loss(num_datum, num_classes, alpha, gamma, data, grad, target_type):
    scores = data.draw(
        hnp.arrays(shape=(num_datum, num_classes), dtype=float, elements=st.floats(1, 100))
    )
    assume((abs(scores.sum(axis=1)) > 0.001).all())

    scores_mygrad = Tensor(scores)
    scores_nn = Tensor(scores)

    truth = np.zeros((num_datum, num_classes))
    targets = data.draw(st.tuples(*(st.integers(0, num_classes - 1) for i in range(num_datum))))
    truth[range(num_datum), targets] = 1
    targets = target_type(targets)

    probs = softmax(scores_mygrad)
    mygrad_focal_loss = sum(truth * (-alpha * (1 - probs + 1e-14)**gamma * log(probs))) / num_datum
    mygrad_focal_loss.backward(grad)

    nn_loss = softmax_focal_loss(scores_nn, targets, alpha=alpha, gamma=gamma).mean()
    nn_loss.backward(grad)

    assert isinstance(nn_loss, Tensor) and nn_loss.ndim == 0
    assert_allclose(nn_loss.data, mygrad_focal_loss.data, atol=1e-4, rtol=1e-4)
    assert_allclose(scores_nn.grad, scores_mygrad.grad, atol=1e-4, rtol=1e-4)

    nn_loss.null_gradients()
    assert scores_nn.grad is None 
開發者ID:rsokl,項目名稱:MyGrad,代碼行數:29,代碼來源:test_focal_loss.py


注:本文中的hypothesis.extra.numpy.arrays方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。