本文整理匯總了Python中hypothesis.extra.numpy.array_shapes方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.array_shapes方法的具體用法?Python numpy.array_shapes怎麽用?Python numpy.array_shapes使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類hypothesis.extra.numpy
的用法示例。
在下文中一共展示了numpy.array_shapes方法的11個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _strategy_2d_array
# 需要導入模塊: from hypothesis.extra import numpy [as 別名]
# 或者: from hypothesis.extra.numpy import array_shapes [as 別名]
def _strategy_2d_array(dtype, minval=0, maxval=None, **kwargs):
if 'min_side' in kwargs:
min_side = kwargs.pop('min_side')
else:
min_side = 1
if 'max_side' in kwargs:
max_side = kwargs.pop('max_side')
else:
max_side = None
if dtype is np.int:
elems = st.integers(minval, maxval, **kwargs)
elif dtype is np.float:
elems = st.floats(minval, maxval, **kwargs)
elif dtype is np.str:
elems = st.text(min_size=minval, max_size=maxval, **kwargs)
else:
raise ValueError('no elements strategy for dtype', dtype)
return arrays(dtype, array_shapes(2, 2, min_side, max_side), elements=elems)
示例2: anyarray
# 需要導入模塊: from hypothesis.extra import numpy [as 別名]
# 或者: from hypothesis.extra.numpy import array_shapes [as 別名]
def anyarray(
draw,
min_dims: int = 0,
max_dims: int = 2,
include_complex_numbers: bool = True,
dtype: Optional[np.dtype] = None,
):
if dtype is None:
if include_complex_numbers:
dtype = one_of(
integer_dtypes(), floating_dtypes(), complex_number_dtypes()
)
else:
dtype = one_of(integer_dtypes(), floating_dtypes())
arr = draw(
arrays(
dtype=dtype,
shape=array_shapes(min_dims=min_dims, max_dims=max_dims),
)
)
assume(not np.any(np.isnan(arr)))
assume(np.all(np.isfinite(arr)))
return arr
示例3: random_array
# 需要導入模塊: from hypothesis.extra import numpy [as 別名]
# 或者: from hypothesis.extra.numpy import array_shapes [as 別名]
def random_array(
draw,
*,
min_dims: int = 0,
max_dims: int = 3,
return_with_indexing: bool = False,
):
arr = draw(
arrays(
dtype=one_of(integer_dtypes(), floating_dtypes()),
shape=array_shapes(min_dims=min_dims, max_dims=max_dims),
)
)
assume(not np.any(np.isnan(arr)))
assume(np.all(np.isfinite(arr)))
if return_with_indexing:
ind = draw(basic_indices(arr.shape))
return arr, ind
else:
return arr
示例4: test_negative_log_likelihood
# 需要導入模塊: from hypothesis.extra import numpy [as 別名]
# 或者: from hypothesis.extra.numpy import array_shapes [as 別名]
def test_negative_log_likelihood(data: st.DataObject, labels_as_tensor: bool):
s = data.draw(
hnp.arrays(
shape=hnp.array_shapes(max_side=10, min_dims=2, max_dims=2),
dtype=float,
elements=st.floats(-100, 100),
)
)
y_true = data.draw(
hnp.arrays(
shape=(s.shape[0],),
dtype=hnp.integer_dtypes(),
elements=st.integers(min_value=0, max_value=s.shape[1] - 1),
).map(Tensor if labels_as_tensor else lambda x: x)
)
scores = Tensor(s)
nll = negative_log_likelihood(mg.log(mg.nnet.softmax(scores)), y_true)
nll.backward()
cross_entropy_scores = Tensor(s)
ce = softmax_crossentropy(cross_entropy_scores, y_true)
ce.backward()
assert_allclose(nll.data, ce.data, atol=1e-5, rtol=1e-5)
assert_allclose(scores.grad, cross_entropy_scores.grad, atol=1e-5, rtol=1e-5)
示例5: test_upcast_roundtrip
# 需要導入模塊: from hypothesis.extra import numpy [as 別名]
# 或者: from hypothesis.extra.numpy import array_shapes [as 別名]
def test_upcast_roundtrip(type_strategy, data: st.DataObject):
thin, wide = data.draw(
st.tuples(type_strategy, type_strategy).map(
lambda x: sorted(x, key=lambda y: np.dtype(y).itemsize)
)
)
orig_tensor = data.draw(
hnp.arrays(
dtype=thin,
shape=hnp.array_shapes(),
elements=hnp.from_dtype(thin).filter(np.isfinite),
).map(Tensor)
)
roundtripped_tensor = orig_tensor.astype(wide).astype(thin)
assert_array_equal(orig_tensor, roundtripped_tensor)
示例6: _glu_shape
# 需要導入模塊: from hypothesis.extra import numpy [as 別名]
# 或者: from hypothesis.extra.numpy import array_shapes [as 別名]
def _glu_shape(draw):
shape = draw(hnp.array_shapes())
if not any(x % 2 == 0 for x in shape):
index = draw(st.integers(0, len(shape) - 1))
shape = list(shape)
shape[index] = draw(st.integers(0, 3).map(lambda x: 2 * x))
return tuple(shape)
示例7: test_multiclass_hinge
# 需要導入模塊: from hypothesis.extra import numpy [as 別名]
# 或者: from hypothesis.extra.numpy import array_shapes [as 別名]
def test_multiclass_hinge(data):
"""Test the built-in implementation of multiclass hinge
against the pure mygrad version"""
s = data.draw(
hnp.arrays(
shape=hnp.array_shapes(max_side=10, min_dims=2, max_dims=2),
dtype=float,
elements=st.floats(-100, 100),
)
)
loss = data.draw(
hnp.arrays(
shape=(s.shape[0],),
dtype=hnp.integer_dtypes(),
elements=st.integers(min_value=0, max_value=s.shape[1] - 1),
)
)
hinge_scores = Tensor(s)
hinge_loss = multiclass_hinge(hinge_scores, loss, constant=False)
hinge_loss.backward()
mygrad_scores = Tensor(s)
correct_labels = (range(len(loss)), loss)
correct_class_scores = mygrad_scores[correct_labels] # Nx1
Lij = mygrad_scores - correct_class_scores[:, np.newaxis] + 1.0 # NxC margins
Lij[Lij <= 0] = 0
Lij[correct_labels] = 0
mygrad_loss = Lij.sum() / mygrad_scores.shape[0]
mygrad_loss.backward()
assert_allclose(hinge_loss.data, mygrad_loss.data)
assert_allclose(mygrad_scores.grad, hinge_scores.grad)
示例8: test_softmax_crossentropy
# 需要導入模塊: from hypothesis.extra import numpy [as 別名]
# 或者: from hypothesis.extra.numpy import array_shapes [as 別名]
def test_softmax_crossentropy(data: st.DataObject, labels_as_tensor: bool):
s = data.draw(
hnp.arrays(
shape=hnp.array_shapes(max_side=10, min_dims=2, max_dims=2),
dtype=float,
elements=st.floats(-100, 100),
)
)
y_true = data.draw(
hnp.arrays(
shape=(s.shape[0],),
dtype=hnp.integer_dtypes(),
elements=st.integers(min_value=0, max_value=s.shape[1] - 1),
).map(Tensor if labels_as_tensor else lambda x: x)
)
scores = Tensor(s)
softmax_cross = softmax_crossentropy(scores, y_true, constant=False)
softmax_cross.backward()
mygrad_scores = Tensor(s)
probs = softmax(mygrad_scores)
correct_labels = (range(len(y_true)), y_true.data if labels_as_tensor else y_true)
truth = np.zeros(mygrad_scores.shape)
truth[correct_labels] = 1
mygrad_cross = (-1 / s.shape[0]) * (log(probs) * truth).sum()
mygrad_cross.backward()
assert_allclose(softmax_cross.data, mygrad_cross.data, atol=1e-5, rtol=1e-5)
assert_allclose(scores.grad, mygrad_scores.grad, atol=1e-5, rtol=1e-5)
示例9: test_weighted_negative_log_likelihood
# 需要導入模塊: from hypothesis.extra import numpy [as 別名]
# 或者: from hypothesis.extra.numpy import array_shapes [as 別名]
def test_weighted_negative_log_likelihood(data: st.DataObject, labels_as_tensor: bool):
s = data.draw(
hnp.arrays(
shape=hnp.array_shapes(min_side=1, max_side=10, min_dims=2, max_dims=2),
dtype=float,
elements=st.floats(-100, 100),
)
)
y_true = data.draw(
hnp.arrays(
shape=(s.shape[0],),
dtype=hnp.integer_dtypes(),
elements=st.integers(min_value=0, max_value=s.shape[1] - 1),
).map(Tensor if labels_as_tensor else lambda x: x)
)
weights = data.draw(
hnp.arrays(
shape=(s.shape[1],),
dtype=float,
elements=st.floats(1e-8, 100),
)
)
scores = Tensor(s)
weights = Tensor(weights)
for score, y in zip(scores, y_true):
score = mg.log(mg.nnet.softmax(score.reshape(1, -1)))
y = y.reshape(-1)
nll = negative_log_likelihood(score, y)
weighted_nll = negative_log_likelihood(score, y, weights=weights)
assert np.isclose(weighted_nll.data, weights[y.data].data * nll.data)
示例10: coords_2d_array
# 需要導入模塊: from hypothesis.extra import numpy [as 別名]
# 或者: from hypothesis.extra.numpy import array_shapes [as 別名]
def coords_2d_array():
return st_numpy.arrays(np.float_, st_numpy.array_shapes(min_dims=2, max_dims=2),
elements=st.floats(allow_nan=False, allow_infinity=False))\
.filter(lambda arr: arr.shape[1] == 2)
示例11: adv_integer_index
# 需要導入模塊: from hypothesis.extra import numpy [as 別名]
# 或者: from hypothesis.extra.numpy import array_shapes [as 別名]
def adv_integer_index(
shape: Shape,
min_dims: int = 1,
max_dims: int = 3,
min_side: int = 1,
max_side: int = 3,
) -> st.SearchStrategy[Tuple[ndarray, ...]]:
""" Hypothesis search strategy: given an array shape, generate a
a valid index for specifying an element/subarray of that array,
using advanced indexing with integer-valued arrays.
Examples from this strategy shrink towards the index
`len(shape) * (np.array([0]), )`.
Parameters
----------
shape : Tuple[int, ...]
The shape of the array whose indices are being generated
min_dims : int, optional (default=1)
The minimum dimensionality permitted for the index-arrays.
max_dims : int, optional (default=3)
The maximum dimensionality permitted for the index-arrays.
min_side : int, optional (default=1)
The minimum side permitted for the index-arrays.
max_side : int, optional (default=3)
The maximum side permitted for the index-arrays.
Returns
-------
hypothesis.searchstrategy.SearchStrategy[Tuple[numpy.ndarray, ...]]
"""
return hnp.integer_array_indices(
shape=shape,
result_shape=hnp.array_shapes(
min_dims=min_dims, max_dims=max_dims, min_side=min_side, max_side=max_side
),
)