本文整理匯總了Python中hypothesis.HealthCheck.all方法的典型用法代碼示例。如果您正苦於以下問題:Python HealthCheck.all方法的具體用法?Python HealthCheck.all怎麽用?Python HealthCheck.all使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類hypothesis.HealthCheck
的用法示例。
在下文中一共展示了HealthCheck.all方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_csr_from_sps
# 需要導入模塊: from hypothesis import HealthCheck [as 別名]
# 或者: from hypothesis.HealthCheck import all [as 別名]
def test_csr_from_sps(copy):
# initialize sparse matrix
mat = np.random.randn(10, 5)
mat[mat <= 0] = 0
smat = sps.csr_matrix(mat)
# make sure it's sparse
assert smat.nnz == np.sum(mat > 0)
csr = lm.CSR.from_scipy(smat, copy=copy)
assert csr.nnz == smat.nnz
assert csr.nrows == smat.shape[0]
assert csr.ncols == smat.shape[1]
assert all(csr.rowptrs == smat.indptr)
assert all(csr.colinds == smat.indices)
assert all(csr.values == smat.data)
assert isinstance(csr.rowptrs, np.ndarray)
assert isinstance(csr.colinds, np.ndarray)
assert isinstance(csr.values, np.ndarray)
示例2: test_csr_transpose
# 需要導入模塊: from hypothesis import HealthCheck [as 別名]
# 或者: from hypothesis.HealthCheck import all [as 別名]
def test_csr_transpose():
rows = np.array([0, 0, 1, 3], dtype=np.int32)
cols = np.array([1, 2, 0, 1], dtype=np.int32)
vals = np.arange(4, dtype=np.float_)
csr = lm.CSR.from_coo(rows, cols, vals)
csc = csr.transpose()
assert csc.nrows == csr.ncols
assert csc.ncols == csr.nrows
assert all(csc.rowptrs == [0, 1, 3, 4])
assert csc.colinds.max() == 3
assert csc.values.sum() == approx(vals.sum())
for r, c, v in zip(rows, cols, vals):
row = csc.row(c)
assert row[r] == v
示例3: test_csr_transpose_coords
# 需要導入模塊: from hypothesis import HealthCheck [as 別名]
# 或者: from hypothesis.HealthCheck import all [as 別名]
def test_csr_transpose_coords():
rows = np.array([0, 0, 1, 3], dtype=np.int32)
cols = np.array([1, 2, 0, 1], dtype=np.int32)
vals = np.arange(4, dtype=np.float_)
csr = lm.CSR.from_coo(rows, cols, vals)
csc = csr.transpose(False)
assert csc.nrows == csr.ncols
assert csc.ncols == csr.nrows
assert all(csc.rowptrs == [0, 1, 3, 4])
assert csc.colinds.max() == 3
assert csc.values is None
for r, c, v in zip(rows, cols, vals):
row = csc.row(c)
assert row[r] == 1
示例4: test_csr_transpose_erow
# 需要導入模塊: from hypothesis import HealthCheck [as 別名]
# 或者: from hypothesis.HealthCheck import all [as 別名]
def test_csr_transpose_erow():
nrows = np.random.randint(10, 1000)
ncols = np.random.randint(10, 500)
mat = np.random.randn(nrows, ncols)
mat[mat <= 0] = 0
mat[:, 0:1] = 0
smat = sps.csr_matrix(mat)
csr = lm.CSR.from_scipy(smat)
csrt = csr.transpose()
assert csrt.nrows == ncols
assert csrt.ncols == nrows
s2 = csrt.to_scipy()
smat = smat.T.tocsr()
assert all(smat.indptr == csrt.rowptrs)
assert np.all(s2.toarray() == smat.toarray())
示例5: test_csr_from_coo_novals
# 需要導入模塊: from hypothesis import HealthCheck [as 別名]
# 或者: from hypothesis.HealthCheck import all [as 別名]
def test_csr_from_coo_novals():
for i in range(50):
coords = np.random.choice(np.arange(50 * 100, dtype=np.int32), 1000, False)
rows = np.mod(coords, 100, dtype=np.int32)
cols = np.floor_divide(coords, 100, dtype=np.int32)
csr = lm.CSR.from_coo(rows, cols, None, (100, 50))
assert csr.nrows == 100
assert csr.ncols == 50
assert csr.nnz == 1000
for i in range(100):
sp = csr.rowptrs[i]
ep = csr.rowptrs[i+1]
assert ep - sp == np.sum(rows == i)
points, = np.nonzero(rows == i)
po = np.argsort(cols[points])
points = points[po]
assert all(np.sort(csr.colinds[sp:ep]) == cols[points])
assert np.sum(csr.row(i)) == len(points)
示例6: test_csr_to_sps
# 需要導入模塊: from hypothesis import HealthCheck [as 別名]
# 或者: from hypothesis.HealthCheck import all [as 別名]
def test_csr_to_sps():
# initialize sparse matrix
mat = np.random.randn(10, 5)
mat[mat <= 0] = 0
# get COO
smat = sps.coo_matrix(mat)
# make sure it's sparse
assert smat.nnz == np.sum(mat > 0)
csr = lm.CSR.from_coo(smat.row, smat.col, smat.data, shape=smat.shape)
assert csr.nnz == smat.nnz
assert csr.nrows == smat.shape[0]
assert csr.ncols == smat.shape[1]
smat2 = csr.to_scipy()
assert sps.isspmatrix(smat2)
assert sps.isspmatrix_csr(smat2)
for i in range(csr.nrows):
assert smat2.indptr[i] == csr.rowptrs[i]
assert smat2.indptr[i+1] == csr.rowptrs[i+1]
sp = smat2.indptr[i]
ep = smat2.indptr[i+1]
assert all(smat2.indices[sp:ep] == csr.colinds[sp:ep])
assert all(smat2.data[sp:ep] == csr.values[sp:ep])
示例7: test_csr_rowinds
# 需要導入模塊: from hypothesis import HealthCheck [as 別名]
# 或者: from hypothesis.HealthCheck import all [as 別名]
def test_csr_rowinds():
rows = np.array([0, 0, 1, 3], dtype=np.int32)
cols = np.array([1, 2, 0, 1], dtype=np.int32)
vals = np.arange(4, dtype=np.float_)
csr = lm.CSR.from_coo(rows, cols, vals)
ris = csr.rowinds()
assert all(ris == rows)
示例8: test_csr_set_values
# 需要導入模塊: from hypothesis import HealthCheck [as 別名]
# 或者: from hypothesis.HealthCheck import all [as 別名]
def test_csr_set_values():
rows = np.array([0, 0, 1, 3], dtype=np.int32)
cols = np.array([1, 2, 0, 1], dtype=np.int32)
vals = np.arange(4, dtype=np.float_)
csr = lm.CSR.from_coo(rows, cols, vals)
v2 = np.random.randn(4)
csr.values = v2
assert all(csr.values == v2)
示例9: test_csr_set_values_oversize
# 需要導入模塊: from hypothesis import HealthCheck [as 別名]
# 或者: from hypothesis.HealthCheck import all [as 別名]
def test_csr_set_values_oversize():
rows = np.array([0, 0, 1, 3], dtype=np.int32)
cols = np.array([1, 2, 0, 1], dtype=np.int32)
vals = np.arange(4, dtype=np.float_)
csr = lm.CSR.from_coo(rows, cols, vals)
v2 = np.random.randn(6)
csr.values = v2
assert all(csr.values == v2[:4])
示例10: test_csr_set_values_undersize
# 需要導入模塊: from hypothesis import HealthCheck [as 別名]
# 或者: from hypothesis.HealthCheck import all [as 別名]
def test_csr_set_values_undersize():
rows = np.array([0, 0, 1, 3], dtype=np.int32)
cols = np.array([1, 2, 0, 1], dtype=np.int32)
vals = np.arange(4, dtype=np.float_)
csr = lm.CSR.from_coo(rows, cols, vals)
v2 = np.random.randn(3)
with raises(ValueError):
csr.values = v2
assert all(csr.values == vals)
示例11: test_csr_row
# 需要導入模塊: from hypothesis import HealthCheck [as 別名]
# 或者: from hypothesis.HealthCheck import all [as 別名]
def test_csr_row():
rows = np.array([0, 0, 1, 3], dtype=np.int32)
cols = np.array([1, 2, 0, 1], dtype=np.int32)
vals = np.arange(4, dtype=np.float_) + 1
csr = lm.CSR.from_coo(rows, cols, vals)
assert all(csr.row(0) == np.array([0, 1, 2], dtype=np.float_))
assert all(csr.row(1) == np.array([3, 0, 0], dtype=np.float_))
assert all(csr.row(2) == np.array([0, 0, 0], dtype=np.float_))
assert all(csr.row(3) == np.array([0, 4, 0], dtype=np.float_))
示例12: test_csr_sparse_row
# 需要導入模塊: from hypothesis import HealthCheck [as 別名]
# 或者: from hypothesis.HealthCheck import all [as 別名]
def test_csr_sparse_row():
rows = np.array([0, 0, 1, 3], dtype=np.int32)
cols = np.array([1, 2, 0, 1], dtype=np.int32)
vals = np.arange(4, dtype=np.float_)
csr = lm.CSR.from_coo(rows, cols, vals)
assert all(csr.row_cs(0) == np.array([1, 2], dtype=np.int32))
assert all(csr.row_cs(1) == np.array([0], dtype=np.int32))
assert all(csr.row_cs(2) == np.array([], dtype=np.int32))
assert all(csr.row_cs(3) == np.array([1], dtype=np.int32))
assert all(csr.row_vs(0) == np.array([0, 1], dtype=np.float_))
assert all(csr.row_vs(1) == np.array([2], dtype=np.float_))
assert all(csr.row_vs(2) == np.array([], dtype=np.float_))
assert all(csr.row_vs(3) == np.array([3], dtype=np.float_))
示例13: test_csr_from_coo_rand
# 需要導入模塊: from hypothesis import HealthCheck [as 別名]
# 或者: from hypothesis.HealthCheck import all [as 別名]
def test_csr_from_coo_rand():
for i in range(100):
coords = np.random.choice(np.arange(50 * 100, dtype=np.int32), 1000, False)
rows = np.mod(coords, 100, dtype=np.int32)
cols = np.floor_divide(coords, 100, dtype=np.int32)
vals = np.random.randn(1000)
csr = lm.CSR.from_coo(rows, cols, vals, (100, 50))
rowinds = csr.rowinds()
assert csr.nrows == 100
assert csr.ncols == 50
assert csr.nnz == 1000
for i in range(100):
sp = csr.rowptrs[i]
ep = csr.rowptrs[i+1]
assert ep - sp == np.sum(rows == i)
points, = np.nonzero(rows == i)
assert len(points) == ep - sp
po = np.argsort(cols[points])
points = points[po]
assert all(np.sort(csr.colinds[sp:ep]) == cols[points])
assert all(np.sort(csr.row_cs(i)) == cols[points])
assert all(csr.values[np.argsort(csr.colinds[sp:ep]) + sp] == vals[points])
assert all(rowinds[sp:ep] == i)
row = np.zeros(50)
row[cols[points]] = vals[points]
assert np.sum(csr.row(i)) == approx(np.sum(vals[points]))
assert all(csr.row(i) == row)
示例14: test_filter
# 需要導入模塊: from hypothesis import HealthCheck [as 別名]
# 或者: from hypothesis.HealthCheck import all [as 別名]
def test_filter(csr):
assume(not np.all(csr.values <= 0)) # we have to have at least one to retain
csrf = csr.filter_nnzs(csr.values > 0)
assert all(csrf.values > 0)
assert csrf.nnz <= csr.nnz
for i in range(csr.nrows):
spo, epo = csr.row_extent(i)
spf, epf = csrf.row_extent(i)
assert epf - spf <= epo - spo
d1 = csr.to_scipy().toarray()
df = csrf.to_scipy().toarray()
d1[d1 < 0] = 0
assert df == approx(d1)
示例15: test_csr_pickle
# 需要導入模塊: from hypothesis import HealthCheck [as 別名]
# 或者: from hypothesis.HealthCheck import all [as 別名]
def test_csr_pickle(csr):
data = pickle.dumps(csr)
csr2 = pickle.loads(data)
assert csr2.nrows == csr.nrows
assert csr2.ncols == csr.ncols
assert csr2.nnz == csr.nnz
assert all(csr2.rowptrs == csr.rowptrs)
assert all(csr2.colinds == csr.colinds)
if csr.values is not None:
assert all(csr2.values == csr.values)
else:
assert csr2.values is None