當前位置: 首頁>>代碼示例>>Python>>正文


Python hp.qloguniform方法代碼示例

本文整理匯總了Python中hyperopt.hp.qloguniform方法的典型用法代碼示例。如果您正苦於以下問題:Python hp.qloguniform方法的具體用法?Python hp.qloguniform怎麽用?Python hp.qloguniform使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在hyperopt.hp的用法示例。


在下文中一共展示了hp.qloguniform方法的10個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_write_uniform

# 需要導入模塊: from hyperopt import hp [as 別名]
# 或者: from hyperopt.hp import qloguniform [as 別名]
def test_write_uniform(self):
        a = configuration_space.UniformFloatHyperparameter("a", 0, 1)
        expected = ('a', 'param_0 = hp.uniform("a", 0.0, 1.0)')
        value = self.pyll_writer.write_hyperparameter(a, None)
        self.assertEqual(expected, value)

        # The hyperparameter name has to be converted seperately because
        # otherwise the parameter values are converted at object costruction
        # time
        a = configuration_space.UniformFloatHyperparameter("a", 1, 10, base=10)
        a.name = self.pyll_writer.convert_name(a)
        expected = ('LOG10_a', 'param_1 = hp.uniform("LOG10_a", 0.0, 1.0)')
        value = self.pyll_writer.write_hyperparameter(a, None)
        self.assertEqual(expected, value)

        nhid1 = configuration_space.UniformFloatHyperparameter(
            "nhid1", 16, 1024, q=16, base=np.e)
        expected = ('nhid1', 'param_2 = hp.qloguniform('
                    '"nhid1", 2.0794540416, 6.93925394604, 16.0)')
        value = self.pyll_writer.write_hyperparameter(nhid1, None)
        self.assertEqual(expected, value) 
開發者ID:automl,項目名稱:HPOlib,代碼行數:23,代碼來源:test_pyll_util.py

示例2: __init__

# 需要導入模塊: from hyperopt import hp [as 別名]
# 或者: from hyperopt.hp import qloguniform [as 別名]
def __init__(self):
        self.search_space = {
          'learning_rate': hp.loguniform('learning_rate', np.log(0.00001), np.log(0.1)),
          'L1_flag': hp.choice('L1_flag', [True, False]),
          'hidden_size': scope.int(hp.qloguniform('hidden_size', np.log(8), np.log(256),1)),
          'batch_size': scope.int(hp.qloguniform('batch_size', np.log(8), np.log(4096),1)),
          'margin': hp.uniform('margin', 0.0, 10.0),
          'optimizer': hp.choice('optimizer', ["adam", "sgd", 'rms']),
          'epochs': hp.choice('epochs', [500]) # always choose 10 training epochs.
        } 
開發者ID:Sujit-O,項目名稱:pykg2vec,代碼行數:12,代碼來源:hyperparams.py

示例3: test_read_qloguniform

# 需要導入模塊: from hyperopt import hp [as 別名]
# 或者: from hyperopt.hp import qloguniform [as 別名]
def test_read_qloguniform(self):
        # 0 float
        # 1   hyperopt_param
        # 2     Literal{nhid1}
        # 3     qloguniform
        # 4       Literal{2.77258872224}
        # 5       Literal{6.9314718056}
        # 6      q =
        # 7       Literal{16}
        qloguniform = hp.qloguniform('nhid1', np.log(16), np.log(1024), q=16). \
            inputs()[0].inputs()[1]
        ret = self.pyll_reader.read_qloguniform(qloguniform, 'nhid1')
        expected = configuration_space.UniformFloatHyperparameter(
            'nhid1', 16, 1024, q=16, base=np.e)
        self.assertEqual(expected, ret) 
開發者ID:automl,項目名稱:HPOlib,代碼行數:17,代碼來源:test_pyll_util.py

示例4: test_write_loguniform_int

# 需要導入模塊: from hyperopt import hp [as 別名]
# 或者: from hyperopt.hp import qloguniform [as 別名]
def test_write_loguniform_int(self):
        c_int = configuration_space.UniformIntegerHyperparameter(
            "c_int", 1, 10, base=np.e)
        expected = ("c_int", 'param_0 = pyll.scope.int(hp.qloguniform('
                    '"c_int", -0.69312718076, 2.35137525716, 1.0))')
        value = self.pyll_writer.write_hyperparameter(c_int, None)
        self.assertEqual(expected, value) 
開發者ID:automl,項目名稱:HPOlib,代碼行數:9,代碼來源:test_pyll_util.py

示例5: test_write_qloguniform

# 需要導入模塊: from hyperopt import hp [as 別名]
# 或者: from hyperopt.hp import qloguniform [as 別名]
def test_write_qloguniform(self):
        d = configuration_space.UniformFloatHyperparameter("d", 0.1, 3, q=0.1,
                                                   base=np.e)
        expected = ("d", 'param_0 = hp.qloguniform("d", -2.99373427089, '
                         '1.11514159062, 0.1)')
        value = self.pyll_writer.write_hyperparameter(d, None)
        self.assertEqual(expected, value) 
開發者ID:automl,項目名稱:HPOlib,代碼行數:9,代碼來源:test_pyll_util.py

示例6: test_write_qloguniform_int

# 需要導入模塊: from hyperopt import hp [as 別名]
# 或者: from hyperopt.hp import qloguniform [as 別名]
def test_write_qloguniform_int(self):
        d_int_1 = configuration_space.UniformIntegerHyperparameter(
            "d_int", 1, 3, q=1.0, base=np.e)
        expected = ("d_int", 'param_0 = pyll.scope.int(hp.qloguniform('
                    '"d_int", -0.69312718076, 1.2527629685, 1.0))')
        value = self.pyll_writer.write_hyperparameter(d_int_1, None)
        self.assertEqual(expected, value)

        d_int_2 = configuration_space.UniformIntegerHyperparameter(
            "d_int", 1, 3, q=2.0, base=np.e)
        expected = ("d_int", 'param_1 = pyll.scope.int(hp.qloguniform('
                    '"d_int", -0.69312718076, 1.2527629685, 2.0))')
        value = self.pyll_writer.write_hyperparameter(d_int_2, None)
        self.assertEqual(expected, value) 
開發者ID:automl,項目名稱:HPOlib,代碼行數:16,代碼來源:test_pyll_util.py

示例7: tpe_configspace

# 需要導入模塊: from hyperopt import hp [as 別名]
# 或者: from hyperopt.hp import qloguniform [as 別名]
def tpe_configspace(self):
        from hyperopt import hp
        import numpy as np
        space = {
            'l_rate': hp.loguniform('l_rate', np.log(1e-6), np.log(1e-1)),
            'burn_in': hp.uniform('burn_in', 0, .8),
            'n_units_1': hp.qloguniform('n_units_1', np.log(16), np.log(512), 1),
            'n_units_2': hp.qloguniform('n_units_2', np.log(16), np.log(512), 1),
            'mdecay': hp.uniform('mdecay', 0, 1)
        }
        return(space) 
開發者ID:automl,項目名稱:BOAH,代碼行數:13,代碼來源:bnn_worker.py

示例8: tpe_configspace

# 需要導入模塊: from hyperopt import hp [as 別名]
# 或者: from hyperopt.hp import qloguniform [as 別名]
def tpe_configspace(self):

        import numpy as np
        from hyperopt import hp

        space = {
            'learning_rate': hp.loguniform('learning_rate', np.log(1e-7), np.log(1e-1)),
            'batch_size': hp.qloguniform('batch_size', np.log(8), np.log(256), 1),
            'n_units_1': hp.qloguniform('n_units_1', np.log(8), np.log(128), 1),
            'n_units_2': hp.qloguniform('n_units_2', np.log(8), np.log(128), 1),
            'discount': hp.uniform('discount', 0, 1),
            'likelihood_ratio_clipping': hp.uniform('likelihood_ratio_clipping', 0, 1),
            'entropy_regularization': hp.uniform('entropy_regularization', 0, 1)
        }
        return(space) 
開發者ID:automl,項目名稱:BOAH,代碼行數:17,代碼來源:cartpole_worker.py

示例9: get_hyperopt_dimensions

# 需要導入模塊: from hyperopt import hp [as 別名]
# 或者: from hyperopt.hp import qloguniform [as 別名]
def get_hyperopt_dimensions(api_config):
        """Help routine to setup hyperopt search space in constructor.

        Take api_config as argument so this can be static.
        """
        # The ordering of iteration prob makes no difference, but just to be
        # safe and consistnent with space.py, I will make sorted.
        param_list = sorted(api_config.keys())

        space = {}
        round_to_values = {}
        for param_name in param_list:
            param_config = api_config[param_name]

            param_type = param_config["type"]

            param_space = param_config.get("space", None)
            param_range = param_config.get("range", None)
            param_values = param_config.get("values", None)

            # Some setup for case that whitelist of values is provided:
            values_only_type = param_type in ("cat", "ordinal")
            if (param_values is not None) and (not values_only_type):
                assert param_range is None
                param_values = np.unique(param_values)
                param_range = (param_values[0], param_values[-1])
                round_to_values[param_name] = interp1d(
                    param_values, param_values, kind="nearest", fill_value="extrapolate"
                )

            if param_type == "int":
                low, high = param_range
                if param_space in ("log", "logit"):
                    space[param_name] = hp.qloguniform(param_name, np.log(low), np.log(high), 1)
                else:
                    space[param_name] = hp.quniform(param_name, low, high, 1)
            elif param_type == "bool":
                assert param_range is None
                assert param_values is None
                space[param_name] = hp.choice(param_name, (False, True))
            elif param_type in ("cat", "ordinal"):
                assert param_range is None
                space[param_name] = hp.choice(param_name, param_values)
            elif param_type == "real":
                low, high = param_range
                if param_space in ("log", "logit"):
                    space[param_name] = hp.loguniform(param_name, np.log(low), np.log(high))
                else:
                    space[param_name] = hp.uniform(param_name, low, high)
            else:
                assert False, "type %s not handled in API" % param_type

        return space, round_to_values 
開發者ID:uber,項目名稱:bayesmark,代碼行數:55,代碼來源:hyperopt_optimizer.py

示例10: visitSearchSpaceNumber

# 需要導入模塊: from hyperopt import hp [as 別名]
# 或者: from hyperopt.hp import qloguniform [as 別名]
def visitSearchSpaceNumber(self, space:SearchSpaceNumber, path:str, counter=None):
        label = self.mk_label(path, counter)

        if space.pgo is not None:
            return scope.pgo_sample(space.pgo, hp.quniform(label, 0, len(space.pgo)-1, 1))

        dist = "uniform"
        if space.distribution:
            dist = space.distribution

        if space.maximum is None:
            raise SearchSpaceError(path, f"maximum not specified for a number with distribution {dist}")
        max = space.getInclusiveMax()

        # These distributions need only a maximum
        if dist == "integer":
            if not space.discrete:
                raise SearchSpaceError(path, "integer distribution specified for a non discrete numeric type")
            return hp.randint(label, max)

        if space.minimum is None:
            raise SearchSpaceError(path, f"minimum not specified for a number with distribution {dist}")
        min = space.getInclusiveMin()

        if dist == "uniform":
            if space.discrete:
                return scope.int(hp.quniform(label, min, max, 1))
            else:
                return hp.uniform(label, min, max)
        elif dist == "loguniform":
            # for log distributions, hyperopt requires that we provide the log of the min/max
            if min <= 0:
                raise SearchSpaceError(path, f"minimum of 0 specified with a {dist} distribution.  This is not allowed; please set it (possibly using minimumForOptimizer) to be positive")
            if min > 0:
                min = math.log(min)
            if max > 0:
                max = math.log(max)
            if space.discrete:
                return scope.int(hp.qloguniform(label, min, max, 1))
            else:
                return hp.loguniform(label, min, max)

        else:
            raise SearchSpaceError(path, f"Unknown distribution type: {dist}") 
開發者ID:IBM,項目名稱:lale,代碼行數:46,代碼來源:lale_hyperopt.py


注:本文中的hyperopt.hp.qloguniform方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。