本文整理匯總了Python中hyperopt.hp.loguniform方法的典型用法代碼示例。如果您正苦於以下問題:Python hp.loguniform方法的具體用法?Python hp.loguniform怎麽用?Python hp.loguniform使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類hyperopt.hp
的用法示例。
在下文中一共展示了hp.loguniform方法的12個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: hyperopt_lightgbm_basic
# 需要導入模塊: from hyperopt import hp [as 別名]
# 或者: from hyperopt.hp import loguniform [as 別名]
def hyperopt_lightgbm_basic(X, y, params, config, max_evals=50):
X_train, X_test, y_train, y_test = data_split_by_time(X, y, test_size=0.2)
X_train, X_val, y_train, y_val = data_split_by_time(X, y, test_size=0.3)
train_data = lgb.Dataset(X_train, label=y_train)
val_data = lgb.Dataset(X_val, label=y_val)
space = {
"learning_rate": hp.loguniform("learning_rate", np.log(0.01), np.log(0.5)),
#"forgetting_factor": hp.loguniform("forgetting_factor", 0.01, 0.1)
#"max_depth": hp.choice("max_depth", [-1, 2, 3, 4, 5, 6]),
"max_depth": hp.choice("max_depth", [1, 2, 3, 4, 5, 6]),
"num_leaves": hp.choice("num_leaves", np.linspace(10, 200, 50, dtype=int)),
"feature_fraction": hp.quniform("feature_fraction", 0.5, 1.0, 0.1),
"bagging_fraction": hp.quniform("bagging_fraction", 0.5, 1.0, 0.1),
"bagging_freq": hp.choice("bagging_freq", np.linspace(0, 50, 10, dtype=int)),
"reg_alpha": hp.uniform("reg_alpha", 0, 2),
"reg_lambda": hp.uniform("reg_lambda", 0, 2),
"min_child_weight": hp.uniform('min_child_weight', 0.5, 10),
}
def objective(hyperparams):
model = lgb.train({**params, **hyperparams}, train_data, 100,
val_data, early_stopping_rounds=30, verbose_eval=0)
pred = model.predict(X_test)
score = roc_auc_score(y_test, pred)
return {'loss': -score, 'status': STATUS_OK}
trials = Trials()
best = hyperopt.fmin(fn=objective, space=space, trials=trials,
algo=tpe.suggest, max_evals=max_evals, verbose=1,
rstate=np.random.RandomState(1))
hyperparams = space_eval(space, best)
log(f"auc = {-trials.best_trial['result']['loss']:0.4f} {hyperparams}")
return hyperparams
示例2: hyperopt_lightgbm
# 需要導入模塊: from hyperopt import hp [as 別名]
# 或者: from hyperopt.hp import loguniform [as 別名]
def hyperopt_lightgbm(X_train: pd.DataFrame, y_train: pd.Series, params: Dict, config: Config, max_evals=10):
X_train, X_test, y_train, y_test = data_split_by_time(X_train, y_train, test_size=0.2)
X_train, X_val, y_train, y_val = data_split_by_time(X_train, y_train, test_size=0.3)
train_data = lgb.Dataset(X_train, label=y_train)
valid_data = lgb.Dataset(X_val, label=y_val)
space = {
"learning_rate": hp.loguniform("learning_rate", np.log(0.01), np.log(0.5)),
#"max_depth": hp.choice("max_depth", [-1, 2, 3, 4, 5, 6]),
"max_depth": hp.choice("max_depth", [1, 2, 3, 4, 5, 6]),
"num_leaves": hp.choice("num_leaves", np.linspace(10, 200, 50, dtype=int)),
"feature_fraction": hp.quniform("feature_fraction", 0.5, 1.0, 0.1),
"bagging_fraction": hp.quniform("bagging_fraction", 0.5, 1.0, 0.1),
"bagging_freq": hp.choice("bagging_freq", np.linspace(0, 50, 10, dtype=int)),
"reg_alpha": hp.uniform("reg_alpha", 0, 2),
"reg_lambda": hp.uniform("reg_lambda", 0, 2),
"min_child_weight": hp.uniform('min_child_weight', 0.5, 10),
}
def objective(hyperparams):
if config.time_left() < 50:
return {'status': STATUS_FAIL}
else:
model = lgb.train({**params, **hyperparams}, train_data, 100,
valid_data, early_stopping_rounds=10, verbose_eval=0)
pred = model.predict(X_test)
score = roc_auc_score(y_test, pred)
#score = model.best_score["valid_0"][params["metric"]]
# in classification, less is better
return {'loss': -score, 'status': STATUS_OK}
trials = Trials()
best = hyperopt.fmin(fn=objective, space=space, trials=trials,
algo=tpe.suggest, max_evals=max_evals, verbose=1,
rstate=np.random.RandomState(1))
hyperparams = space_eval(space, best)
log(f"auc = {-trials.best_trial['result']['loss']:0.4f} {hyperparams}")
return hyperparams
示例3: __init__
# 需要導入模塊: from hyperopt import hp [as 別名]
# 或者: from hyperopt.hp import loguniform [as 別名]
def __init__(self):
self.search_space = {
'learning_rate': hp.loguniform('learning_rate', np.log(0.00001), np.log(0.1)),
'L1_flag': hp.choice('L1_flag', [True, False]),
'hidden_size': scope.int(hp.qloguniform('hidden_size', np.log(8), np.log(256),1)),
'batch_size': scope.int(hp.qloguniform('batch_size', np.log(8), np.log(4096),1)),
'margin': hp.uniform('margin', 0.0, 10.0),
'optimizer': hp.choice('optimizer', ["adam", "sgd", 'rms']),
'epochs': hp.choice('epochs', [500]) # always choose 10 training epochs.
}
示例4: __init__
# 需要導入模塊: from hyperopt import hp [as 別名]
# 或者: from hyperopt.hp import loguniform [as 別名]
def __init__(self, train_file, test_file, gpu_mode, model_out_dir, log_dir, max_epochs, batch_size, num_workers):
"""
Initialize the object
:param train_file: A train CSV file containing train data set information
:param test_file: A test CSV file containing train data set information
:param gpu_mode: If true, GPU will be used to train and test the models
:param model_out_dir: Directory to save the model
:param log_dir: Directory to save the log
"""
# the hyper-parameter space is defined here
self.space = {
# hp.loguniform returns a value drawn according to exp(uniform(low, high)) so that the logarithm of the
# return value is uniformly distributed.
'lr': hp.loguniform('lr', -8, -4),
'l2': hp.loguniform('l2', -12, -4)
}
self.train_file = train_file
self.test_file = test_file
self.gpu_mode = gpu_mode
self.log_directory = log_dir
self.model_out_dir = model_out_dir
self.max_epochs = max_epochs
self.batch_size = batch_size
self.num_workers = num_workers
self.hidden_size = TrainOptions.HIDDEN_SIZE
self.gru_layers = TrainOptions.GRU_LAYERS
示例5: hyperopt_lightgbm
# 需要導入模塊: from hyperopt import hp [as 別名]
# 或者: from hyperopt.hp import loguniform [as 別名]
def hyperopt_lightgbm(X: pd.DataFrame, y: pd.Series, params: Dict, config: Config):
X_train, X_val, y_train, y_val = data_split(X, y, test_size=0.5)
train_data = lgb.Dataset(X_train, label=y_train)
valid_data = lgb.Dataset(X_val, label=y_val)
space = {
"max_depth": hp.choice("max_depth", np.arange(2, 10, 1, dtype=int)),
# smaller than 2^(max_depth)
"num_leaves": hp.choice("num_leaves", np.arange(4, 200, 4, dtype=int)),
"feature_fraction": hp.quniform("feature_fraction", 0.2, 0.8, 0.1),
# "bagging_fraction": hp.quniform("bagging_fraction", 0.2, 0.8, 0.1),
# "bagging_freq": hp.choice("bagging_freq", np.linspace(0, 10, 2, dtype=int)),
# "scale_pos_weight":hp.uniform('scale_pos_weight',1.0, 10.0),
# "colsample_by_tree":hp.uniform("colsample_bytree",0.5,1.0),
"min_child_weight": hp.quniform('min_child_weight', 2, 50, 2),
"reg_alpha": hp.uniform("reg_alpha", 2.0, 8.0),
"reg_lambda": hp.uniform("reg_lambda", 2.0, 8.0),
"learning_rate": hp.quniform("learning_rate", 0.05, 0.4, 0.01),
# "learning_rate": hp.loguniform("learning_rate", np.log(0.04), np.log(0.5)),
#
"min_data_in_leaf": hp.choice('min_data_in_leaf', np.arange(200, 2000, 100, dtype=int)),
#"is_unbalance": hp.choice("is_unbalance", [True])
}
def objective(hyperparams):
model = lgb.train({**params, **hyperparams}, train_data, 300,
valid_data, early_stopping_rounds=45, verbose_eval=0)
score = model.best_score["valid_0"][params["metric"]]
# in classification, less is better
return {'loss': -score, 'status': STATUS_OK}
trials = Trials()
best = hyperopt.fmin(fn=objective, space=space, trials=trials,
algo=tpe.suggest, max_evals=150, verbose=1,
rstate=np.random.RandomState(1))
hyperparams = space_eval(space, best)
log(f"auc = {-trials.best_trial['result']['loss']:0.4f} {hyperparams}")
return hyperparams
示例6: predict
# 需要導入模塊: from hyperopt import hp [as 別名]
# 或者: from hyperopt.hp import loguniform [as 別名]
def predict(self, x):
data = xgb.DMatrix(x)
pred = self.model.predict(data)
return pred
# -----------------------------------
# 探索するパラメータの空間の指定
# -----------------------------------
# hp.choiceでは、複數の選択肢から選ぶ
# hp.uniformでは、下限・上限を指定した一様分布から抽出する。引數は下限・上限
# hp.quniformでは、下限・上限を指定した一様分布のうち一定の間隔ごとの點から抽出する。引數は下限・上限・間隔
# hp.loguniformでは、下限・上限を指定した対數が一様分布に従う分布から抽出する。引數は下限・上限の対數をとった値
示例7: test_read_loguniform
# 需要導入模塊: from hyperopt import hp [as 別名]
# 或者: from hyperopt.hp import loguniform [as 別名]
def test_read_loguniform(self):
# 0 float
# 1 hyperopt_param
# 2 Literal{colnorm_thresh}
# 3 loguniform
# 4 Literal{-20.7232658369}
# 5 Literal{-6.90775527898}
loguniform = hp.loguniform('colnorm_thresh', np.log(1e-9),
np.log(1e-3)).inputs()[0].inputs()[1]
ret = self.pyll_reader.read_loguniform(loguniform, 'colnorm_thresh')
expected = configuration_space.UniformFloatHyperparameter(
'colnorm_thresh', 1e-9, 1e-3, base=np.e)
self.assertEqual(expected, ret)
示例8: test_write_loguniform
# 需要導入模塊: from hyperopt import hp [as 別名]
# 或者: from hyperopt.hp import loguniform [as 別名]
def test_write_loguniform(self):
c = configuration_space.UniformFloatHyperparameter("c", 0.001, 1, base=np.e)
expected = ("c", 'param_0 = hp.loguniform("c", -6.90775527898, 0.0)')
value = self.pyll_writer.write_hyperparameter(c, None)
self.assertEqual(expected, value)
示例9: tpe_configspace
# 需要導入模塊: from hyperopt import hp [as 別名]
# 或者: from hyperopt.hp import loguniform [as 別名]
def tpe_configspace(self):
from hyperopt import hp
import numpy as np
space = {
'l_rate': hp.loguniform('l_rate', np.log(1e-6), np.log(1e-1)),
'burn_in': hp.uniform('burn_in', 0, .8),
'n_units_1': hp.qloguniform('n_units_1', np.log(16), np.log(512), 1),
'n_units_2': hp.qloguniform('n_units_2', np.log(16), np.log(512), 1),
'mdecay': hp.uniform('mdecay', 0, 1)
}
return(space)
示例10: tpe_configspace
# 需要導入模塊: from hyperopt import hp [as 別名]
# 或者: from hyperopt.hp import loguniform [as 別名]
def tpe_configspace(self):
import numpy as np
from hyperopt import hp
space = {
'learning_rate': hp.loguniform('learning_rate', np.log(1e-7), np.log(1e-1)),
'batch_size': hp.qloguniform('batch_size', np.log(8), np.log(256), 1),
'n_units_1': hp.qloguniform('n_units_1', np.log(8), np.log(128), 1),
'n_units_2': hp.qloguniform('n_units_2', np.log(8), np.log(128), 1),
'discount': hp.uniform('discount', 0, 1),
'likelihood_ratio_clipping': hp.uniform('likelihood_ratio_clipping', 0, 1),
'entropy_regularization': hp.uniform('entropy_regularization', 0, 1)
}
return(space)
示例11: get_hyperopt_dimensions
# 需要導入模塊: from hyperopt import hp [as 別名]
# 或者: from hyperopt.hp import loguniform [as 別名]
def get_hyperopt_dimensions(api_config):
"""Help routine to setup hyperopt search space in constructor.
Take api_config as argument so this can be static.
"""
# The ordering of iteration prob makes no difference, but just to be
# safe and consistnent with space.py, I will make sorted.
param_list = sorted(api_config.keys())
space = {}
round_to_values = {}
for param_name in param_list:
param_config = api_config[param_name]
param_type = param_config["type"]
param_space = param_config.get("space", None)
param_range = param_config.get("range", None)
param_values = param_config.get("values", None)
# Some setup for case that whitelist of values is provided:
values_only_type = param_type in ("cat", "ordinal")
if (param_values is not None) and (not values_only_type):
assert param_range is None
param_values = np.unique(param_values)
param_range = (param_values[0], param_values[-1])
round_to_values[param_name] = interp1d(
param_values, param_values, kind="nearest", fill_value="extrapolate"
)
if param_type == "int":
low, high = param_range
if param_space in ("log", "logit"):
space[param_name] = hp.qloguniform(param_name, np.log(low), np.log(high), 1)
else:
space[param_name] = hp.quniform(param_name, low, high, 1)
elif param_type == "bool":
assert param_range is None
assert param_values is None
space[param_name] = hp.choice(param_name, (False, True))
elif param_type in ("cat", "ordinal"):
assert param_range is None
space[param_name] = hp.choice(param_name, param_values)
elif param_type == "real":
low, high = param_range
if param_space in ("log", "logit"):
space[param_name] = hp.loguniform(param_name, np.log(low), np.log(high))
else:
space[param_name] = hp.uniform(param_name, low, high)
else:
assert False, "type %s not handled in API" % param_type
return space, round_to_values
示例12: visitSearchSpaceNumber
# 需要導入模塊: from hyperopt import hp [as 別名]
# 或者: from hyperopt.hp import loguniform [as 別名]
def visitSearchSpaceNumber(self, space:SearchSpaceNumber, path:str, counter=None):
label = self.mk_label(path, counter)
if space.pgo is not None:
return scope.pgo_sample(space.pgo, hp.quniform(label, 0, len(space.pgo)-1, 1))
dist = "uniform"
if space.distribution:
dist = space.distribution
if space.maximum is None:
raise SearchSpaceError(path, f"maximum not specified for a number with distribution {dist}")
max = space.getInclusiveMax()
# These distributions need only a maximum
if dist == "integer":
if not space.discrete:
raise SearchSpaceError(path, "integer distribution specified for a non discrete numeric type")
return hp.randint(label, max)
if space.minimum is None:
raise SearchSpaceError(path, f"minimum not specified for a number with distribution {dist}")
min = space.getInclusiveMin()
if dist == "uniform":
if space.discrete:
return scope.int(hp.quniform(label, min, max, 1))
else:
return hp.uniform(label, min, max)
elif dist == "loguniform":
# for log distributions, hyperopt requires that we provide the log of the min/max
if min <= 0:
raise SearchSpaceError(path, f"minimum of 0 specified with a {dist} distribution. This is not allowed; please set it (possibly using minimumForOptimizer) to be positive")
if min > 0:
min = math.log(min)
if max > 0:
max = math.log(max)
if space.discrete:
return scope.int(hp.qloguniform(label, min, max, 1))
else:
return hp.loguniform(label, min, max)
else:
raise SearchSpaceError(path, f"Unknown distribution type: {dist}")