本文整理匯總了Python中hparams.hparams.sentences方法的典型用法代碼示例。如果您正苦於以下問題:Python hparams.sentences方法的具體用法?Python hparams.sentences怎麽用?Python hparams.sentences使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類hparams.hparams
的用法示例。
在下文中一共展示了hparams.sentences方法的7個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: run_eval
# 需要導入模塊: from hparams import hparams [as 別名]
# 或者: from hparams.hparams import sentences [as 別名]
def run_eval(args, checkpoint_path, output_dir):
print(hparams_debug_string())
synth = Synthesizer()
synth.load(checkpoint_path)
eval_dir = os.path.join(output_dir, 'eval')
log_dir = os.path.join(output_dir, 'logs-eval')
wav = load_wav(args.reference_audio)
reference_mel = melspectrogram(wav).transpose()
#Create output path if it doesn't exist
os.makedirs(eval_dir, exist_ok=True)
os.makedirs(log_dir, exist_ok=True)
os.makedirs(os.path.join(log_dir, 'wavs'), exist_ok=True)
os.makedirs(os.path.join(log_dir, 'plots'), exist_ok=True)
with open(os.path.join(eval_dir, 'map.txt'), 'w') as file:
for i, text in enumerate(tqdm(hparams.sentences)):
start = time.time()
mel_filename = synth.synthesize(text, i+1, eval_dir, log_dir, None, reference_mel)
file.write('{}|{}\n'.format(text, mel_filename))
print('synthesized mel spectrograms at {}'.format(eval_dir))
示例2: get_sentences
# 需要導入模塊: from hparams import hparams [as 別名]
# 或者: from hparams.hparams import sentences [as 別名]
def get_sentences(args):
if args.text_list != '':
with open(args.text_list, 'rb') as f:
sentences = list(map(lambda l: l.decode("utf-8")[:-1], f.readlines()))
else:
sentences = hparams.sentences
return sentences
示例3: synthesize
# 需要導入模塊: from hparams import hparams [as 別名]
# 或者: from hparams.hparams import sentences [as 別名]
def synthesize(args, hparams, taco_checkpoint, wave_checkpoint, sentences):
log('Running End-to-End TTS Evaluation. Model: {}'.format(args.name or args.model))
log('Synthesizing mel-spectrograms from text..')
wavenet_in_dir = tacotron_synthesize(args, hparams, taco_checkpoint, sentences)
#Delete Tacotron model from graph
tf.reset_default_graph()
#Sleep 1/2 second to let previous graph close and avoid error messages while Wavenet is synthesizing
sleep(0.5)
log('Synthesizing audio from mel-spectrograms.. (This may take a while)')
wavenet_synthesize(args, hparams, wave_checkpoint)
log('Tacotron-2 TTS synthesis complete!')
示例4: main
# 需要導入模塊: from hparams import hparams [as 別名]
# 或者: from hparams.hparams import sentences [as 別名]
def main():
accepted_modes = ['eval', 'synthesis', 'live']
parser = argparse.ArgumentParser()
parser.add_argument('--checkpoint', default='pretrained/', help='Path to model checkpoint')
parser.add_argument('--hparams', default='',
help='Hyperparameter overrides as a comma-separated list of name=value pairs')
parser.add_argument('--name', help='Name of logging directory if the two models were trained together.')
parser.add_argument('--tacotron_name', help='Name of logging directory of Tacotron. If trained separately')
parser.add_argument('--wavenet_name', help='Name of logging directory of WaveNet. If trained separately')
parser.add_argument('--model', default='Tacotron')
parser.add_argument('--input_dir', default='training_data/', help='folder to contain inputs sentences/targets')
parser.add_argument('--mels_dir', default='tacotron_output/eval/', help='folder to contain mels to synthesize audio from using the Wavenet')
parser.add_argument('--output_dir', default='output/', help='folder to contain synthesized mel spectrograms')
parser.add_argument('--mode', default='eval', help='mode of run: can be one of {}'.format(accepted_modes))
parser.add_argument('--GTA', default='True', help='Ground truth aligned synthesis, defaults to True, only considered in synthesis mode')
parser.add_argument('--text_list', default='', help='Text file contains list of texts to be synthesized. Valid if mode=eval')
parser.add_argument('--speaker_id', default=None, help='Defines the speakers ids to use when running standalone Wavenet on a folder of mels. this variable must be a comma-separated list of ids')
args = parser.parse_args()
if args.mode not in accepted_modes:
raise ValueError('accepted modes are: {}, found {}'.format(accepted_modes, args.mode))
if args.GTA not in ('True', 'False'):
raise ValueError('GTA option must be either True or False')
taco_checkpoint, wave_checkpoint, hparams = prepare_run(args)
sentences = get_sentences(args)
tacotron_synthesize(args, hparams, taco_checkpoint, sentences)
示例5: get_sentences
# 需要導入模塊: from hparams import hparams [as 別名]
# 或者: from hparams.hparams import sentences [as 別名]
def get_sentences(args):
if args.text_list != '':
with open(args.text_list, 'rb') as f:
sentences = list(map(lambda l: l.decode("utf-8")[:-1], f.readlines()))
else:
sentences = hparams.sentences
return sentences
示例6: synthesize
# 需要導入模塊: from hparams import hparams [as 別名]
# 或者: from hparams.hparams import sentences [as 別名]
def synthesize(args, hparams, taco_checkpoint, wave_checkpoint, sentences):
log('Running End-to-End TTS Evaluation. Model: {}'.format(args.name or args.model))
log('Synthesizing mel-spectrograms from text..')
wavenet_in_dir = tacotron_synthesize(args, hparams, taco_checkpoint, sentences)
# Delete Tacotron model from graph
tf.reset_default_graph()
# Sleep 1/2 second to let previous graph close and avoid error messages while Wavenet is synthesizing
sleep(0.5)
log('Synthesizing audio from mel-spectrograms.. (This may take a while)')
# wavenet_synthesize(args, hparams, wave_checkpoint)
log('Tacotron-2 TTS synthesis complete!')
示例7: main
# 需要導入模塊: from hparams import hparams [as 別名]
# 或者: from hparams.hparams import sentences [as 別名]
def main():
accepted_modes = ['eval', 'synthesis', 'live']
parser = argparse.ArgumentParser()
parser.add_argument('--checkpoint', default='pretrained/', help='Path to model checkpoint')
parser.add_argument('--hparams', default='',
help='Hyperparameter overrides as a comma-separated list of name=value pairs')
parser.add_argument('--name', help='Name of logging directory if the two models were trained together.')
parser.add_argument('--tacotron_name', help='Name of logging directory of Tacotron. If trained separately')
parser.add_argument('--wavenet_name', help='Name of logging directory of WaveNet. If trained separately')
parser.add_argument('--model', default='Tacotron-2')
parser.add_argument('--input_dir', default='training_data/', help='folder to contain inputs sentences/targets')
parser.add_argument('--mels_dir', default='tacotron_output/eval/', help='folder to contain mels to synthesize audio from using the Wavenet')
parser.add_argument('--output_dir', default='output/', help='folder to contain synthesized mel spectrograms')
parser.add_argument('--mode', default='eval', help='mode of run: can be one of {}'.format(accepted_modes))
parser.add_argument('--GTA', default='True', help='Ground truth aligned synthesis, defaults to True, only considered in synthesis mode')
parser.add_argument('--text_list', default='', help='Text file contains list of texts to be synthesized. Valid if mode=eval')
parser.add_argument('--speaker_id', default=None, help='Defines the speakers ids to use when running standalone Wavenet on a folder of mels. this variable must be a comma-separated list of ids')
args = parser.parse_args()
accepted_models = ['Tacotron', 'WaveNet', 'Tacotron-2']
if args.model not in accepted_models:
raise ValueError('please enter a valid model to synthesize with: {}'.format(accepted_models))
if args.mode not in accepted_modes:
raise ValueError('accepted modes are: {}, found {}'.format(accepted_modes, args.mode))
if args.mode == 'live' and args.model == 'Wavenet':
raise RuntimeError('Wavenet vocoder cannot be tested live due to its slow generation. Live only works with Tacotron!')
if args.GTA not in ('True', 'False'):
raise ValueError('GTA option must be either True or False')
if args.model == 'Tacotron-2':
if args.mode == 'live':
warn('Requested a live evaluation with Tacotron-2, Wavenet will not be used!')
if args.mode == 'synthesis':
raise ValueError('I don\'t recommend running WaveNet on entire dataset.. The world might end before the synthesis :) (only eval allowed)')
taco_checkpoint, wave_checkpoint, hparams = prepare_run(args)
sentences = get_sentences(args)
if args.model == 'Tacotron':
_ = tacotron_synthesize(args, hparams, taco_checkpoint, sentences)
elif args.model == 'WaveNet':
wavenet_synthesize(args, hparams, wave_checkpoint)
elif args.model == 'Tacotron-2':
synthesize(args, hparams, taco_checkpoint, wave_checkpoint, sentences)
else:
raise ValueError('Model provided {} unknown! {}'.format(args.model, accepted_models))