當前位置: 首頁>>代碼示例>>Python>>正文


Python hparams.hop_size方法代碼示例

本文整理匯總了Python中hparams.hparams.hop_size方法的典型用法代碼示例。如果您正苦於以下問題:Python hparams.hop_size方法的具體用法?Python hparams.hop_size怎麽用?Python hparams.hop_size使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在hparams.hparams的用法示例。


在下文中一共展示了hparams.hop_size方法的11個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: get_hop_size

# 需要導入模塊: from hparams import hparams [as 別名]
# 或者: from hparams.hparams import hop_size [as 別名]
def get_hop_size():
    hop_size = hparams.hop_size
    if hop_size is None:
        assert hparams.frame_shift_ms is not None
        hop_size = int(hparams.frame_shift_ms / 1000 * hparams.sample_rate)
    return hop_size 
開發者ID:candlewill,項目名稱:Griffin_lim,代碼行數:8,代碼來源:audio.py

示例2: wavegen

# 需要導入模塊: from hparams import hparams [as 別名]
# 或者: from hparams.hparams import hop_size [as 別名]
def wavegen(model, c=None, tqdm=tqdm):
    """Generate waveform samples by WaveNet.
    
    """

    model.eval()
    model.make_generation_fast_()

    Tc = c.shape[0]
    upsample_factor = hparams.hop_size
    # Overwrite length according to feature size
    length = Tc * upsample_factor

    # B x C x T
    c = torch.FloatTensor(c.T).unsqueeze(0)

    initial_input = torch.zeros(1, 1, 1).fill_(0.0)

    # Transform data to GPU
    initial_input = initial_input.to(device)
    c = None if c is None else c.to(device)

    with torch.no_grad():
        y_hat = model.incremental_forward(
            initial_input, c=c, g=None, T=length, tqdm=tqdm, softmax=True, quantize=True,
            log_scale_min=hparams.log_scale_min)

    y_hat = y_hat.view(-1).cpu().data.numpy()

    return y_hat 
開發者ID:auspicious3000,項目名稱:autovc,代碼行數:32,代碼來源:synthesis.py

示例3: get_hop_size

# 需要導入模塊: from hparams import hparams [as 別名]
# 或者: from hparams.hparams import hop_size [as 別名]
def get_hop_size():
	hop_size = hparams.hop_size
	if hop_size is None:
		assert hparams.frame_shift_ms is not None
		hop_size = int(hparams.frame_shift_ms / 1000 * hparams.sample_rate)
	return hop_size 
開發者ID:rishikksh20,項目名稱:vae_tacotron2,代碼行數:8,代碼來源:audio.py

示例4: run_synthesis

# 需要導入模塊: from hparams import hparams [as 別名]
# 或者: from hparams.hparams import hop_size [as 別名]
def run_synthesis(args, checkpoint_path, output_dir):
	metadata_filename = os.path.join(args.input_dir, 'train.txt')
	print(hparams_debug_string())
	synth = Synthesizer()
	synth.load(checkpoint_path, gta=args.GTA)
	with open(metadata_filename, encoding='utf-8') as f:
		metadata = [line.strip().split('|') for line in f]
		frame_shift_ms = hparams.hop_size / hparams.sample_rate
		hours = sum([int(x[4]) for x in metadata]) * frame_shift_ms / (3600)
		print('Loaded metadata for {} examples ({:.2f} hours)'.format(len(metadata), hours))

	if args.GTA==True:
		synth_dir = os.path.join(output_dir, 'gta')
	else:
		synth_dir = os.path.join(output_dir, 'natural')

	#Create output path if it doesn't exist
	os.makedirs(synth_dir, exist_ok=True)

	print('starting synthesis')
	mel_dir = os.path.join(args.input_dir, 'mels')
	wav_dir = os.path.join(args.input_dir, 'audio')
	with open(os.path.join(synth_dir, 'map.txt'), 'w') as file:
		for i, meta in enumerate(tqdm(metadata)):
			text = meta[5]
			mel_filename = os.path.join(mel_dir, meta[1])
			wav_filename = os.path.join(wav_dir, meta[0])
			mel_output_filename = synth.synthesize(text, None, i+1, synth_dir, None, mel_filename)

			file.write('{}|{}|{}|{}\n'.format(text, mel_filename, mel_output_filename, wav_filename))
	print('synthesized mel spectrograms at {}'.format(synth_dir)) 
開發者ID:rishikksh20,項目名稱:vae_tacotron2,代碼行數:33,代碼來源:synthesize.py

示例5: __init__

# 需要導入模塊: from hparams import hparams [as 別名]
# 或者: from hparams.hparams import hop_size [as 別名]
def __init__(self, coordinator, metadata_filename, hparams):
		super(Feeder, self).__init__()
		self._coord = coordinator
		self._hparams = hparams
		self._cleaner_names = [x.strip() for x in hparams.cleaners.split(',')]
		self._offset = 0

		# Load metadata
		self._mel_dir = os.path.join(os.path.dirname(metadata_filename), 'mels')
		self._linear_dir = os.path.join(os.path.dirname(metadata_filename), 'linear')
		with open(metadata_filename, encoding='utf-8') as f:
			self._metadata = [line.strip().split('|') for line in f]
			frame_shift_ms = hparams.hop_size / hparams.sample_rate
			hours = sum([int(x[4]) for x in self._metadata]) * frame_shift_ms / (3600)
			log('Loaded metadata for {} examples ({:.2f} hours)'.format(len(self._metadata), hours))

		# Create placeholders for inputs and targets. Don't specify batch size because we want
		# to be able to feed different batch sizes at eval time.
		self._placeholders = [
		tf.placeholder(tf.int32, shape=(None, None), name='inputs'),
		tf.placeholder(tf.int32, shape=(None, ), name='input_lengths'),
		tf.placeholder(tf.float32, shape=(None, None, hparams.num_mels), name='mel_targets'),
		tf.placeholder(tf.int32,[None],'mel_lengths'),
		tf.placeholder(tf.float32, shape=(None, None), name='token_targets'),
		tf.placeholder(tf.float32, shape=(None, None, hparams.num_freq), name='linear_targets'),
		]

		# Create queue for buffering data
		queue = tf.FIFOQueue(8, [tf.int32, tf.int32, tf.float32, tf.int32, tf.float32, tf.float32], name='input_queue')
		self._enqueue_op = queue.enqueue(self._placeholders)
		self.inputs, self.input_lengths, self.mel_targets, self.mel_lengths, self.token_targets, self.linear_targets = queue.dequeue()
		self.inputs.set_shape(self._placeholders[0].shape)
		self.input_lengths.set_shape(self._placeholders[1].shape)
		self.mel_targets.set_shape(self._placeholders[2].shape)
		self.mel_lengths.set_shape(self._placeholders[3].shape)
		self.token_targets.set_shape(self._placeholders[4].shape)
		self.linear_targets.set_shape(self._placeholders[5].shape) 
開發者ID:rishikksh20,項目名稱:vae_tacotron2,代碼行數:39,代碼來源:feeder.py

示例6: get_hop_size

# 需要導入模塊: from hparams import hparams [as 別名]
# 或者: from hparams.hparams import hop_size [as 別名]
def get_hop_size():
    hop_size = hparams.hop_size
    if hop_size is None:
        assert hparams.frame_shift_ms is not None
        hop_size = int(hparams.frame_shift_ms / 1000 * hparams.sample_rate)
    return hop_size

# Conversions: 
開發者ID:tuan3w,項目名稱:cnn_vocoder,代碼行數:10,代碼來源:audio.py

示例7: run_synthesis

# 需要導入模塊: from hparams import hparams [as 別名]
# 或者: from hparams.hparams import hop_size [as 別名]
def run_synthesis(args, checkpoint_path, output_dir, hparams):
	GTA = (args.GTA == 'True')
	if GTA:
		synth_dir = os.path.join(output_dir, 'gta')

		#Create output path if it doesn't exist
		os.makedirs(synth_dir, exist_ok=True)
	else:
		synth_dir = os.path.join(output_dir, 'natural')

		#Create output path if it doesn't exist
		os.makedirs(synth_dir, exist_ok=True)


	metadata_filename = os.path.join(args.input_dir, 'train.txt')
	log(hparams_debug_string())
	synth = Synthesizer()
	synth.load(checkpoint_path, hparams, gta=GTA)
	with open(metadata_filename, encoding='utf-8') as f:
		metadata = [line.strip().split('|') for line in f]
		frame_shift_ms = hparams.hop_size / hparams.sample_rate
		hours = sum([int(x[4]) for x in metadata]) * frame_shift_ms / (3600)
		log('Loaded metadata for {} examples ({:.2f} hours)'.format(len(metadata), hours))

	metadata = [metadata[i: i+hparams.tacotron_synthesis_batch_size] for i in range(0, len(metadata), hparams.tacotron_synthesis_batch_size)]

	log('starting synthesis')
	mel_dir = os.path.join(args.input_dir, 'mels')
	wav_dir = os.path.join(args.input_dir, 'audio')
	with open(os.path.join(synth_dir, 'map.txt'), 'w') as file:
		for i, meta in enumerate(tqdm(metadata)):
			texts = [m[5] for m in meta]
			mel_filenames = [os.path.join(mel_dir, m[1]) for m in meta]
			wav_filenames = [os.path.join(wav_dir, m[0]) for m in meta]
			basenames = [os.path.basename(m).replace('.npy', '').replace('mel-', '') for m in mel_filenames]
			mel_output_filenames, speaker_ids = synth.synthesize(texts, basenames, synth_dir, None, mel_filenames)

			for elems in zip(wav_filenames, mel_filenames, mel_output_filenames, speaker_ids, texts):
				file.write('|'.join([str(x) for x in elems]) + '\n')
	log('synthesized mel spectrograms at {}'.format(synth_dir))
	return os.path.join(synth_dir, 'map.txt') 
開發者ID:Joee1995,項目名稱:tacotron2-mandarin-griffin-lim,代碼行數:43,代碼來源:synthesize.py

示例8: _lws_processor

# 需要導入模塊: from hparams import hparams [as 別名]
# 或者: from hparams.hparams import hop_size [as 別名]
def _lws_processor():
    return lws.lws(hparams.fft_size, hparams.hop_size, mode="speech")


# Conversions: 
開發者ID:G-Wang,項目名稱:WaveRNN-Pytorch,代碼行數:7,代碼來源:audio.py

示例9: raw_collate

# 需要導入模塊: from hparams import hparams [as 別名]
# 或者: from hparams.hparams import hop_size [as 別名]
def raw_collate(batch) :
    """collate function used for raw wav forms, such as using beta/guassian/mixture of logistic
    """
    
    pad = 2
    mel_win = hp.seq_len // hp.hop_size + 2 * pad
    max_offsets = [x[0].shape[-1] - (mel_win + 2 * pad) for x in batch]
    mel_offsets = [np.random.randint(0, offset) for offset in max_offsets]
    sig_offsets = [(offset + pad) * hp.hop_size for offset in mel_offsets]
    
    mels = [x[0][:, mel_offsets[i]:mel_offsets[i] + mel_win] \
            for i, x in enumerate(batch)]
    
    coarse = [x[1][sig_offsets[i]:sig_offsets[i] + hp.seq_len + 1] \
              for i, x in enumerate(batch)]
    
    mels = np.stack(mels).astype(np.float32)
    coarse = np.stack(coarse).astype(np.float32)
    
    mels = torch.FloatTensor(mels)
    coarse = torch.FloatTensor(coarse)
    
    x_input = coarse[:,:hp.seq_len]
    
    y_coarse = coarse[:, 1:]
    
    return x_input, mels, y_coarse 
開發者ID:G-Wang,項目名稱:WaveRNN-Pytorch,代碼行數:29,代碼來源:dataset.py

示例10: discrete_collate

# 需要導入模塊: from hparams import hparams [as 別名]
# 或者: from hparams.hparams import hop_size [as 別名]
def discrete_collate(batch) :
    """collate function used for discrete wav output, such as 9-bit, mulaw-discrete, etc.
    """
    
    pad = 2
    mel_win = hp.seq_len // hp.hop_size + 2 * pad
    max_offsets = [x[0].shape[-1] - (mel_win + 2 * pad) for x in batch]
    mel_offsets = [np.random.randint(0, offset) for offset in max_offsets]
    sig_offsets = [(offset + pad) * hp.hop_size for offset in mel_offsets]
    
    mels = [x[0][:, mel_offsets[i]:mel_offsets[i] + mel_win] \
            for i, x in enumerate(batch)]
    
    coarse = [x[1][sig_offsets[i]:sig_offsets[i] + hp.seq_len + 1] \
              for i, x in enumerate(batch)]
    
    mels = np.stack(mels).astype(np.float32)
    coarse = np.stack(coarse).astype(np.int64)
    
    mels = torch.FloatTensor(mels)
    coarse = torch.LongTensor(coarse)
    if hp.input_type == 'bits':
        x_input = 2 * coarse[:, :hp.seq_len].float() / (2**hp.bits - 1.) - 1.
    elif hp.input_type == 'mulaw':
        x_input = inv_mulaw_quantize(coarse[:, :hp.seq_len], hp.mulaw_quantize_channels)
    
    y_coarse = coarse[:, 1:]
    
    return x_input, mels, y_coarse 
開發者ID:G-Wang,項目名稱:WaveRNN-Pytorch,代碼行數:31,代碼來源:dataset.py

示例11: run_synthesis

# 需要導入模塊: from hparams import hparams [as 別名]
# 或者: from hparams.hparams import hop_size [as 別名]
def run_synthesis(args, checkpoint_path, output_dir, hparams):
	GTA = (args.GTA == 'True')
	if GTA:
		synth_dir = os.path.join(output_dir, 'gta')

		#Create output path if it doesn't exist
		os.makedirs(synth_dir, exist_ok=True)
	else:
		synth_dir = os.path.join(output_dir, 'natural')

		#Create output path if it doesn't exist
		os.makedirs(synth_dir, exist_ok=True)


	metadata_filename = os.path.join(args.input_dir, 'train.txt')
	log(hparams_debug_string())
	synth = Synthesizer()
	synth.load(checkpoint_path, hparams, gta=GTA)
	with open(metadata_filename, encoding='utf-8') as f:
		metadata = [line.strip().split('|') for line in f]
		frame_shift_ms = hparams.hop_size / hparams.sample_rate
		hours = sum([int(x[4]) for x in metadata]) * frame_shift_ms / (3600)
		log('Loaded metadata for {} examples ({:.2f} hours)'.format(len(metadata), hours))

	#Set inputs batch wise
	metadata = [metadata[i: i+hparams.tacotron_synthesis_batch_size] for i in range(0, len(metadata), hparams.tacotron_synthesis_batch_size)]

	log('Starting Synthesis')
	mel_dir = os.path.join(args.input_dir, 'mels')
	wav_dir = os.path.join(args.input_dir, 'audio')
	with open(os.path.join(synth_dir, 'map.txt'), 'w') as file:
		for i, meta in enumerate(tqdm(metadata)):
			texts = [m[5] for m in meta]
			mel_filenames = [os.path.join(mel_dir, m[1]) for m in meta]
			wav_filenames = [os.path.join(wav_dir, m[0]) for m in meta]
			basenames = [os.path.basename(m).replace('.npy', '').replace('mel-', '') for m in mel_filenames]
			mel_output_filenames, speaker_ids = synth.synthesize(texts, basenames, synth_dir, None, mel_filenames)

			for elems in zip(wav_filenames, mel_filenames, mel_output_filenames, speaker_ids, texts):
				file.write('|'.join([str(x) for x in elems]) + '\n')
	log('synthesized mel spectrograms at {}'.format(synth_dir))
	return os.path.join(synth_dir, 'map.txt') 
開發者ID:Rayhane-mamah,項目名稱:Tacotron-2,代碼行數:44,代碼來源:synthesize.py


注:本文中的hparams.hparams.hop_size方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。