本文整理匯總了Python中hparams.hparams.frame_shift_ms方法的典型用法代碼示例。如果您正苦於以下問題:Python hparams.frame_shift_ms方法的具體用法?Python hparams.frame_shift_ms怎麽用?Python hparams.frame_shift_ms使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類hparams.hparams
的用法示例。
在下文中一共展示了hparams.frame_shift_ms方法的9個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _process_utterance
# 需要導入模塊: from hparams import hparams [as 別名]
# 或者: from hparams.hparams import frame_shift_ms [as 別名]
def _process_utterance(out_dir, index, wav_path, labels_path, text):
# Load the wav file and trim silence from the ends:
wav = audio.load_wav(wav_path)
start_offset, end_offset = _parse_labels(labels_path)
start = int(start_offset * hparams.sample_rate)
end = int(end_offset * hparams.sample_rate) if end_offset is not None else -1
wav = wav[start:end]
max_samples = _max_out_length * hparams.frame_shift_ms / 1000 * hparams.sample_rate
if len(wav) > max_samples:
return None
spectrogram = audio.spectrogram(wav).astype(np.float32)
n_frames = spectrogram.shape[1]
mel_spectrogram = audio.melspectrogram(wav).astype(np.float32)
spectrogram_filename = 'blizzard-spec-%05d.npy' % index
mel_filename = 'blizzard-mel-%05d.npy' % index
np.save(os.path.join(out_dir, spectrogram_filename), spectrogram.T, allow_pickle=False)
np.save(os.path.join(out_dir, mel_filename), mel_spectrogram.T, allow_pickle=False)
return (spectrogram_filename, mel_filename, n_frames, text)
示例2: get_hop_size
# 需要導入模塊: from hparams import hparams [as 別名]
# 或者: from hparams.hparams import frame_shift_ms [as 別名]
def get_hop_size():
hop_size = hparams.hop_size
if hop_size is None:
assert hparams.frame_shift_ms is not None
hop_size = int(hparams.frame_shift_ms / 1000 * hparams.sample_rate)
return hop_size
示例3: spectrogram2wav
# 需要導入模塊: from hparams import hparams [as 別名]
# 或者: from hparams.hparams import frame_shift_ms [as 別名]
def spectrogram2wav(spectrogram, n_iter=hparams.griffin_lim_iters, n_fft=(hparams.num_freq - 1) * 2,
win_length=int(hparams.frame_length_ms / 1000 * hparams.sample_rate),
hop_length=int(hparams.frame_shift_ms / 1000 * hparams.sample_rate)):
'''Converts spectrogram into a waveform using Griffin-lim's raw.
'''
def invert_spectrogram(spectrogram):
'''
spectrogram: [t, f]
'''
spectrogram = tf.expand_dims(spectrogram, 0)
inversed = tf.contrib.signal.inverse_stft(spectrogram, win_length, hop_length, n_fft)
squeezed = tf.squeeze(inversed, 0)
return squeezed
spectrogram = tf.transpose(spectrogram)
spectrogram = tf.cast(spectrogram, dtype=tf.complex64) # [t, f]
X_best = tf.identity(spectrogram)
for i in range(n_iter):
X_t = invert_spectrogram(X_best)
est = tf.contrib.signal.stft(X_t, win_length, hop_length, n_fft, pad_end=False) # (1, T, n_fft/2+1)
phase = est / tf.cast(tf.maximum(1e-8, tf.abs(est)), tf.complex64) # [t, f]
X_best = spectrogram * phase # [t, t]
X_t = invert_spectrogram(X_best)
y = tf.real(X_t)
return y
示例4: write_metadata
# 需要導入模塊: from hparams import hparams [as 別名]
# 或者: from hparams.hparams import frame_shift_ms [as 別名]
def write_metadata(metadata, out_dir):
with open(os.path.join(out_dir, 'train.txt'), 'w', encoding='utf-8') as f:
for m in metadata:
f.write('|'.join([str(x) for x in m]) + '\n')
frames = sum([m[2] for m in metadata])
hours = frames * hparams.frame_shift_ms / (3600 * 1000)
print('Wrote %d utterances, %d frames (%.2f hours)' % (len(metadata), frames, hours))
print('Max input length: %d' % max(len(m[3]) for m in metadata))
print('Max output length: %d' % max(m[2] for m in metadata))
示例5: _stft_parameters
# 需要導入模塊: from hparams import hparams [as 別名]
# 或者: from hparams.hparams import frame_shift_ms [as 別名]
def _stft_parameters():
n_fft = (hparams.num_freq - 1) * 2
hop_length = int(hparams.frame_shift_ms / 1000 * hparams.sample_rate)
win_length = int(hparams.frame_length_ms / 1000 * hparams.sample_rate)
return n_fft, hop_length, win_length
# Conversions:
示例6: _process_utterance
# 需要導入模塊: from hparams import hparams [as 別名]
# 或者: from hparams.hparams import frame_shift_ms [as 別名]
def _process_utterance(out_dir, index, wav_path, text):
'''Preprocesses a single utterance audio/text pair.
This writes the mel and linear scale spectrograms to disk and returns a tuple to write
to the train.txt file.
Args:
out_dir: The directory to write the spectrograms into
index: The numeric index to use in the spectrogram filenames.
wav_path: Path to the audio file containing the speech input
text: The text spoken in the input audio file
Returns:
A (spectrogram_filename, mel_filename, n_frames, text) tuple to write to train.txt
'''
# Load the audio to a numpy array:
wav = audio.load_wav(wav_path)
max_samples = _max_out_length * hparams.frame_shift_ms / 1000 * hparams.sample_rate
if len(wav) > max_samples and _max_out_length is not None:
return None
# Compute the linear-scale spectrogram from the wav:
spectrogram = audio.spectrogram(wav).astype(np.float32)
n_frames = spectrogram.shape[1]
# Compute a mel-scale spectrogram from the wav:
mel_spectrogram = audio.melspectrogram(wav).astype(np.float32)
# Write the spectrograms to disk:
spectrogram_filename = 'blizzard2013-spec-%05d.npy' % index
mel_filename = 'blizzard2013-mel-%05d.npy' % index
np.save(os.path.join(out_dir, spectrogram_filename), spectrogram.T, allow_pickle=False)
np.save(os.path.join(out_dir, mel_filename), mel_spectrogram.T, allow_pickle=False)
# Return a tuple describing this training example:
return (spectrogram_filename, mel_filename, n_frames, text)
示例7: get_hop_size
# 需要導入模塊: from hparams import hparams [as 別名]
# 或者: from hparams.hparams import frame_shift_ms [as 別名]
def get_hop_size():
hop_size = hparams.hop_size
if hop_size is None:
assert hparams.frame_shift_ms is not None
hop_size = int(hparams.frame_shift_ms / 1000 * hparams.sample_rate)
return hop_size
示例8: get_hop_size
# 需要導入模塊: from hparams import hparams [as 別名]
# 或者: from hparams.hparams import frame_shift_ms [as 別名]
def get_hop_size():
hop_size = hparams.hop_size
if hop_size is None:
assert hparams.frame_shift_ms is not None
hop_size = int(hparams.frame_shift_ms / 1000 * hparams.sample_rate)
return hop_size
# Conversions:
示例9: _stft_parameters
# 需要導入模塊: from hparams import hparams [as 別名]
# 或者: from hparams.hparams import frame_shift_ms [as 別名]
def _stft_parameters():
n_fft = (hps.num_freq - 1) * 2
hop_length = int(hps.frame_shift_ms / 1000 * hps.sample_rate)
win_length = int(hps.frame_length_ms / 1000 * hps.sample_rate)
return n_fft, hop_length, win_length
# Conversions: