當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.size方法代碼示例

本文整理匯總了Python中horovod.tensorflow.size方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.size方法的具體用法?Python tensorflow.size怎麽用?Python tensorflow.size使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在horovod.tensorflow的用法示例。


在下文中一共展示了tensorflow.size方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: train_input_fn

# 需要導入模塊: from horovod import tensorflow [as 別名]
# 或者: from horovod.tensorflow import size [as 別名]
def train_input_fn(input_file, _parse_fn, name_to_features,
		params, **kargs):
	if_shard = kargs.get("if_shard", "1")
	dataset = tf.data.TFRecordDataset(input_file, buffer_size=params.get("buffer_size", 100))
	print("==hvd size {}, rank {}==".format(hvd.size(), hvd.rank()))
	if if_shard == "1":
		dataset = dataset.shard(hvd.size(), hvd.rank())
	dataset = dataset.map(lambda x:_parse_fn(x, name_to_features))
	dataset = dataset.shuffle(
							buffer_size=params.get("buffer_size", 1024)+3*params.get("batch_size", 32),
							seed=np.random.randint(0,1e10,1)[0],
							reshuffle_each_iteration=True)
	dataset = dataset.batch(params.get("batch_size", 32))
	dataset = dataset.repeat(params.get("epoch", 100))
	iterator = dataset.make_one_shot_iterator()
	features = iterator.get_next()
	return features 
開發者ID:yyht,項目名稱:BERT,代碼行數:19,代碼來源:hvd_distributed_tf_data_utils.py

示例2: get_train_op

# 需要導入模塊: from horovod import tensorflow [as 別名]
# 或者: from horovod.tensorflow import size [as 別名]
def get_train_op(self, loss, tvars, init_lr, 
							num_train_steps, **kargs):
		learning_rate = self.lr_decay_fn(init_lr, num_train_steps, **kargs)
		learning_rate = self.warm_up(learning_rate, init_lr, **kargs)
		print("==optimizer hvd size=={}".format(hvd.size()))
		opt = self.optimizer_op(learning_rate*hvd.size(), **kargs)

		# add uber horvod distributed optimizer
		self.opt = hvd.DistributedOptimizer(opt)
		grads = self.grad_clip_fn(self.opt, loss, tvars, **kargs)

		# self.grad_summaries_merged = optimizer_utils.add_grad_summaries(
		# 						zip(grads, tvars))

		train_op = self.opt.apply_gradients(
					zip(grads, tvars), global_step=self.global_step)
		new_global_step = self.global_step + 1
		train_op = tf.group(train_op, [self.global_step.assign(new_global_step)])
		return train_op 
開發者ID:yyht,項目名稱:BERT,代碼行數:21,代碼來源:hvd_distributed_optimizer.py

示例3: get_gradients

# 需要導入模塊: from horovod import tensorflow [as 別名]
# 或者: from horovod.tensorflow import size [as 別名]
def get_gradients(self, loss, params):
        """
        Compute gradients of all trainable variables.

        See Optimizer.get_gradients() for more info.

        In DistributedOptimizer, get_gradients() is overriden to also
        allreduce the gradients before returning them.
        """
        gradients = super(self.__class__, self).get_gradients(loss, params)
        if hvd.size() > 1:
            averaged_gradients = []
            with tf.name_scope(self._name + "_Allreduce"):
                for grad in gradients:
                    if grad is not None:
                        avg_grad = hvd.allreduce(grad, device_dense=self._device_dense,
                                                 device_sparse=self._device_sparse)
                        averaged_gradients.append(avg_grad)
                    else:
                        averaged_gradients.append(None)
                return averaged_gradients
        else:
            return gradients 
開發者ID:mlperf,項目名稱:training_results_v0.6,代碼行數:25,代碼來源:__init__.py

示例4: test_horovod_allreduce_type_error

# 需要導入模塊: from horovod import tensorflow [as 別名]
# 或者: from horovod.tensorflow import size [as 別名]
def test_horovod_allreduce_type_error(self):
        """Test that the allreduce raises an error if different ranks try to
        send tensors of different type."""
        hvd.init()
        rank = hvd.rank()
        size = hvd.size()

        # This test does not apply if there is only one worker.
        if size == 1:
            return

        with self.test_session(config=self.config) as session:
            # Same rank, different dimension
            dims = [17] * 3
            tensor = tf.ones(dims,
                             dtype=tf.int32 if rank % 2 == 0 else tf.float32)
            with self.assertRaises(tf.errors.FailedPreconditionError):
                session.run(hvd.allreduce(tensor)) 
開發者ID:mlperf,項目名稱:training_results_v0.6,代碼行數:20,代碼來源:test_tensorflow.py

示例5: test_horovod_allreduce_cpu_gpu_error

# 需要導入模塊: from horovod import tensorflow [as 別名]
# 或者: from horovod.tensorflow import size [as 別名]
def test_horovod_allreduce_cpu_gpu_error(self):
        """Test that the allreduce raises an error if different ranks try to
        perform reduction on CPU and GPU."""
        # Only do this test if there are GPUs available.
        if not tf.test.is_gpu_available(cuda_only=True):
            return

        hvd.init()
        local_rank = hvd.local_rank()
        size = hvd.size()

        # This test does not apply if there is only one worker.
        if size == 1:
            return

        device = "/gpu:%d" % local_rank if local_rank % 2 == 0 else "/cpu:0"
        with self.test_session(config=self.config) as session:
            with tf.device(device):
                # Same rank, different dimension
                dims = [17] * 3
                tensor = tf.ones(dims, dtype=tf.int32)
                with self.assertRaises(tf.errors.FailedPreconditionError):
                    session.run(hvd.allreduce(tensor)) 
開發者ID:mlperf,項目名稱:training_results_v0.6,代碼行數:25,代碼來源:test_tensorflow.py

示例6: test_horovod_allgather_error

# 需要導入模塊: from horovod import tensorflow [as 別名]
# 或者: from horovod.tensorflow import size [as 別名]
def test_horovod_allgather_error(self):
        """Test that the allgather returns an error if any dimension besides
        the first is different among the tensors being gathered."""
        hvd.init()
        rank = hvd.rank()
        size = hvd.size()

        # This test does not apply if there is only one worker.
        if size == 1:
            return

        with self.test_session(config=self.config) as session:
            tensor_size = [17] * 3
            tensor_size[1] = 10 * (rank + 1)
            tensor = tf.ones(tensor_size, dtype=tf.float32) * rank
            with self.assertRaises(tf.errors.FailedPreconditionError):
                session.run(hvd.allgather(tensor)) 
開發者ID:mlperf,項目名稱:training_results_v0.6,代碼行數:19,代碼來源:test_tensorflow.py

示例7: test_horovod_allgather_type_error

# 需要導入模塊: from horovod import tensorflow [as 別名]
# 或者: from horovod.tensorflow import size [as 別名]
def test_horovod_allgather_type_error(self):
        """Test that the allgather returns an error if the types being gathered
        differ among the processes"""
        hvd.init()
        rank = hvd.rank()
        size = hvd.size()

        # This test does not apply if there is only one worker.
        if size == 1:
            return

        with self.test_session(config=self.config) as session:
            tensor_size = [17] * 3
            dtype = tf.int32 if rank % 2 == 0 else tf.float32
            tensor = tf.ones(tensor_size, dtype=dtype) * rank
            with self.assertRaises(tf.errors.FailedPreconditionError):
                session.run(hvd.allgather(tensor)) 
開發者ID:mlperf,項目名稱:training_results_v0.6,代碼行數:19,代碼來源:test_tensorflow.py

示例8: test_horovod_broadcast_error

# 需要導入模塊: from horovod import tensorflow [as 別名]
# 或者: from horovod.tensorflow import size [as 別名]
def test_horovod_broadcast_error(self):
        """Test that the broadcast returns an error if any dimension besides
        the first is different among the tensors being broadcasted."""
        hvd.init()
        rank = hvd.rank()
        size = hvd.size()

        # This test does not apply if there is only one worker.
        if size == 1:
            return

        with self.test_session(config=self.config) as session:
            tensor_size = [17] * 3
            tensor_size[1] = 10 * (rank + 1)
            tensor = tf.ones(tensor_size, dtype=tf.float32) * rank
            with self.assertRaises(tf.errors.FailedPreconditionError):
                session.run(hvd.broadcast(tensor, 0)) 
開發者ID:mlperf,項目名稱:training_results_v0.6,代碼行數:19,代碼來源:test_tensorflow.py

示例9: setup

# 需要導入模塊: from horovod import tensorflow [as 別名]
# 或者: from horovod.tensorflow import size [as 別名]
def setup():
    if not horovod_installed:
        return False

    global horovod_initialized
    if horovod_initialized:
        return hvd

    hvd.init()
    horovod_initialized = True

    horovod_num_worker = hvd.size()
    horovod_rank = hvd.rank()
    # verify that MPI multi-threading is supported.
    assert hvd.mpi_threads_supported()
    # make sure MPI is not re-initialized.
    import mpi4py.rc
    mpi4py.rc.initialize = False
    # import mpi4py
    from mpi4py import MPI
    comm = MPI.COMM_WORLD
    # check size and rank are synchronized
    assert horovod_num_worker == comm.Get_size()
    assert horovod_rank == comm.Get_rank()
    return hvd 
開發者ID:blue-oil,項目名稱:blueoil,代碼行數:27,代碼來源:horovod.py

示例10: _log_summary

# 需要導入模塊: from horovod import tensorflow [as 別名]
# 或者: from horovod.tensorflow import size [as 別名]
def _log_summary(total_images, batch_size, duration):
    logger = logging.getLogger(__name__)
    images_per_second = total_images / duration
    logger.info("Data length:      {}".format(total_images))
    logger.info("Total duration:   {:.3f}".format(duration))
    logger.info("Total images/sec: {:.3f}".format(images_per_second))
    logger.info(
        "Batch size:       (Per GPU {}: Total {})".format(
            batch_size, hvd.size() * batch_size if defaults.DISTRIBUTED else batch_size
        )
    )
    logger.info(
        "Distributed:      {}".format("True" if defaults.DISTRIBUTED else "False")
    )
    logger.info(
        "Num GPUs:         {:.3f}".format(hvd.size() if defaults.DISTRIBUTED else 1)
    ) 
開發者ID:microsoft,項目名稱:DistributedDeepLearning,代碼行數:19,代碼來源:resnet_main.py

示例11: setup_horovod

# 需要導入模塊: from horovod import tensorflow [as 別名]
# 或者: from horovod.tensorflow import size [as 別名]
def setup_horovod():
    import horovod.tensorflow as hvd

    # Initialize Horovod
    hvd.init()
    # Verify that MPI multi-threading is supported.
    assert hvd.mpi_threads_supported()

    from mpi4py import MPI

    assert hvd.size() == MPI.COMM_WORLD.Get_size()

    is_root = hvd.rank() == 0

    def mpi_average(local_list):
        # _local_list_orig = local_list
        local_list = list(map(float, local_list))
        # print('RANK {} AVERAGING {} -> {}'.format(hvd.rank(), _local_list_orig, local_list))
        sums = MPI.COMM_WORLD.gather(sum(local_list), root=0)
        counts = MPI.COMM_WORLD.gather(len(local_list), root=0)
        sum_counts = sum(counts) if is_root else None
        avg = (sum(sums) / sum_counts) if is_root else None
        return avg, sum_counts

    return hvd, MPI, is_root, mpi_average 
開發者ID:aravindsrinivas,項目名稱:flowpp,代碼行數:27,代碼來源:flow_training.py

示例12: _train

# 需要導入模塊: from horovod import tensorflow [as 別名]
# 或者: from horovod.tensorflow import size [as 別名]
def _train(model: Model,
           data: TrainingData,
           checkpoint: Union[str, None],
           parameter_checkpoint: Union[str, None],
           save_start: bool,
           train_params: trainer.TrainParams,
           evaluators: List[Evaluator],
           out: ModelDir,
           notes=None,
           dry_run=False,
           start_eval=False):
    print('Horovod size: ', hvd.size())
    print('Horovod rank: ', hvd.rank())
    print('Horovod local rank: ', hvd.local_rank())

    if train_params.async_encoding:
        _train_async(model, data, checkpoint, parameter_checkpoint, save_start, train_params,
                 evaluators, out, notes, dry_run, start_eval)
        return
    else:
        raise NotImplementedError('Syncronous training with Horovod not supported yet') 
開發者ID:bloomsburyai,項目名稱:cape-document-qa,代碼行數:23,代碼來源:horovod_patches.py

示例13: get_training_params

# 需要導入模塊: from horovod import tensorflow [as 別名]
# 或者: from horovod.tensorflow import size [as 別名]
def get_training_params(train_config):
    return TrainParams(
        SerializableOptimizer(
            train_config.optimizer,
            dict(learning_rate=train_config.learning_rate * hvd.size())
        ),
        num_epochs=train_config.n_epochs,
        ema=train_config.ema,
        max_checkpoints_to_keep=train_config.max_checkpoints_to_keep,
        async_encoding=train_config.async_encoding,
        log_period=train_config.log_period,
        eval_period=train_config.eval_period,
        save_period=train_config.save_period,
        best_weights=("dev", "b8/question-text-f1"),
        eval_samples=dict(dev=None, train=6000),
        eval_at_zero=False
    ) 
開發者ID:bloomsburyai,項目名稱:cape-document-qa,代碼行數:19,代碼來源:cape_ablate_horovod.py

示例14: main

# 需要導入模塊: from horovod import tensorflow [as 別名]
# 或者: from horovod.tensorflow import size [as 別名]
def main(_):
    if not FLAGS.vocab_size:
        FLAGS.vocab_size = len(open(FLAGS.vocab_file).readlines())
    if not FLAGS.num_labels:
        FLAGS.num_labels = len(open(FLAGS.label_file).readlines())
    if FLAGS.horovod:
        nproc = hvd.size()
        total = FLAGS.train_steps
        FLAGS.train_steps = total / nproc
        print("Running %d steps on each of %d processes for %d total" % (
            FLAGS.train_steps, nproc, total))
    FastTrain() 
開發者ID:apcode,項目名稱:tensorflow_fasttext,代碼行數:14,代碼來源:classifier.py

示例15: adam2_old

# 需要導入模塊: from horovod import tensorflow [as 別名]
# 或者: from horovod.tensorflow import size [as 別名]
def adam2_old(params, cost_or_grads, lr=3e-4, mom1=0.9, mom2=0.999, epsilon=1e-8):
    updates = []
    if type(cost_or_grads) is not list:
        gs = tf.gradients(cost_or_grads, params)
    else:
        gs = cost_or_grads

    # all-reduce
    grads1 = [Z.allreduce_mean(g) for g in gs]
    grads2 = [Z.allreduce_mean(tf.square(g)) for g in gs]
    mom2 = tf.maximum(0., 1. - (hvd.size() * (1 - mom2)))

    t = tf.Variable(1., 'adam_t')
    lr_t = lr * tf.sqrt((1. - tf.pow(mom2, t))) / (1. - tf.pow(mom1, t))
    updates.append(t.assign_add(1))

    for p, g1, g2 in zip(params, grads1, grads2):
        mg = tf.Variable(tf.zeros(p.get_shape()), p.name + '_adam_mg')
        if mom1 > 0:
            v = tf.Variable(tf.zeros(p.get_shape()), p.name + '_adam_v')
            v_t = mom1 * v + (1. - mom1) * g1
            updates.append(v.assign(v_t))
        else:
            v_t = g1
        mg_t = mom2 * mg + (1. - mom2) * g2
        delta_t = v_t / (tf.sqrt(mg_t) + epsilon)
        p_t = p - lr_t * delta_t
        updates.append(mg.assign(mg_t))
        updates.append(p.assign(p_t))
    return tf.group(*updates) 
開發者ID:openai,項目名稱:glow,代碼行數:32,代碼來源:optim.py


注:本文中的horovod.tensorflow.size方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。