本文整理匯總了Python中holoviews.Scatter方法的典型用法代碼示例。如果您正苦於以下問題:Python holoviews.Scatter方法的具體用法?Python holoviews.Scatter怎麽用?Python holoviews.Scatter使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類holoviews
的用法示例。
在下文中一共展示了holoviews.Scatter方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: plot_landscape
# 需要導入模塊: import holoviews [as 別名]
# 或者: from holoviews import Scatter [as 別名]
def plot_landscape(data):
"""
Plot the data as an energy landscape.
Args:
data: (x, y, xx, yy, z, xlim, ylim). x, y, z represent the \
coordinates of the points that will be interpolated. xx, yy \
represent the meshgrid used to interpolate the points. xlim, \
ylim are tuples containing the limits of the x and y axes.
Returns:
Plot representing the interpolated energy landscape of the target points.
"""
x, y, xx, yy, z, xlim, ylim = data
zz = griddata((x, y), z, (xx, yy), method="linear")
mesh = holoviews.QuadMesh((xx, yy, zz))
contour = holoviews.operation.contours(mesh, levels=8)
scatter = holoviews.Scatter((x, y))
contour_mesh = mesh * contour * scatter
return contour_mesh.redim(
x=holoviews.Dimension("x", range=xlim), y=holoviews.Dimension("y", range=ylim),
)
示例2: test_to_element
# 需要導入模塊: import holoviews [as 別名]
# 或者: from holoviews import Scatter [as 別名]
def test_to_element(self):
curve = self.ds.to(Curve, 'a', 'b', groupby=[])
curve2 = self.ds2.to(Curve, 'a', 'b', groupby=[])
self.assertNotEqual(curve, curve2)
self.assertEqual(curve.dataset, self.ds)
scatter = curve.to(Scatter)
self.assertEqual(scatter.dataset, self.ds)
# Check pipeline
ops = curve.pipeline.operations
self.assertEqual(len(ops), 2)
self.assertIs(ops[0].output_type, Dataset)
self.assertIs(ops[1].output_type, Curve)
# Execute pipeline
self.assertEqual(curve.pipeline(curve.dataset), curve)
self.assertEqual(
curve.pipeline(self.ds2), curve2
)
示例3: test_apply_curve
# 需要導入模塊: import holoviews [as 別名]
# 或者: from holoviews import Scatter [as 別名]
def test_apply_curve(self):
curve = self.ds.to.curve('a', 'b', groupby=[]).apply(
lambda c: Scatter(c.select(b=(20, None)).data)
)
curve2 = self.ds2.to.curve('a', 'b', groupby=[]).apply(
lambda c: Scatter(c.select(b=(20, None)).data)
)
self.assertNotEqual(curve, curve2)
# Check pipeline
ops = curve.pipeline.operations
self.assertEqual(len(ops), 4)
self.assertIs(ops[0].output_type, Dataset)
self.assertIs(ops[1].output_type, Curve)
self.assertIs(ops[2].output_type, Apply)
self.assertEqual(ops[2].kwargs, {'mode': None})
self.assertEqual(ops[3].method_name, '__call__')
# Execute pipeline
self.assertEqual(curve.pipeline(curve.dataset), curve)
self.assertEqual(
curve.pipeline(self.ds2), curve2
)
示例4: test_holoviews_pane_mpl_renderer
# 需要導入模塊: import holoviews [as 別名]
# 或者: from holoviews import Scatter [as 別名]
def test_holoviews_pane_mpl_renderer(document, comm):
curve = hv.Curve([1, 2, 3])
pane = Pane(curve)
# Create pane
row = pane.get_root(document, comm=comm)
assert isinstance(row, BkRow)
assert len(row.children) == 1
model = row.children[0]
assert pane._models[row.ref['id']][0] is model
assert model.text.startswith('<img src=')
# Replace Pane.object
scatter = hv.Scatter([1, 2, 3])
pane.object = scatter
new_model = row.children[0]
assert model.text != new_model.text
# Cleanup
pane._cleanup(row)
assert pane._models == {}
示例5: plot_landscape
# 需要導入模塊: import holoviews [as 別名]
# 或者: from holoviews import Scatter [as 別名]
def plot_landscape(data):
"""Plot the walkers distribution overlaying a histogram on a bivariate plot."""
X, x, y, xlim, ylim = data
mesh = holoviews.Bivariate(X)
scatter = holoviews.Scatter((x, y))
contour_mesh = mesh * scatter
return contour_mesh.redim(
x=holoviews.Dimension("x", range=xlim), y=holoviews.Dimension("y", range=ylim),
)
示例6: test_attempt_to_override_kind_on_method
# 需要導入模塊: import holoviews [as 別名]
# 或者: from holoviews import Scatter [as 別名]
def test_attempt_to_override_kind_on_method(self):
hvplot = hvPlotTabular(self.df, {'scatter': {'kind': 'line'}})
self.assertIsInstance(hvplot.scatter(y='y'), Scatter)
示例7: test_rolling_outliers_std_ints
# 需要導入模塊: import holoviews [as 別名]
# 或者: from holoviews import Scatter [as 別名]
def test_rolling_outliers_std_ints(self):
outliers = rolling_outlier_std(self.int_outliers, rolling_window=2, sigma=1)
self.assertEqual(outliers, Scatter([(4, 10)]))
示例8: test_rolling_outliers_std_dates
# 需要導入模塊: import holoviews [as 別名]
# 或者: from holoviews import Scatter [as 別名]
def test_rolling_outliers_std_dates(self):
outliers = rolling_outlier_std(self.date_outliers, rolling_window=2, sigma=1)
self.assertEqual(outliers, Scatter([(pd.Timestamp("2016-01-05"), 10)]))
示例9: setUp
# 需要導入模塊: import holoviews [as 別名]
# 或者: from holoviews import Scatter [as 別名]
def setUp(self):
"Variations on the constructors in the Elements notebook"
self.scatter1 = Scatter([(1, i) for i in range(20)])
self.scatter2 = Scatter([(1, i) for i in range(21)])
self.scatter3 = Scatter([(1, i*2) for i in range(20)])
示例10: test_scatter_unequal_data_shape
# 需要導入模塊: import holoviews [as 別名]
# 或者: from holoviews import Scatter [as 別名]
def test_scatter_unequal_data_shape(self):
try:
self.assertEqual(self.scatter1, self.scatter2)
except AssertionError as e:
if not str(e).startswith("Scatter not of matching length, 20 vs. 21."):
raise self.failureException("Scatter data mismatch error not raised.")
示例11: test_scatter_ellipsis_value
# 需要導入模塊: import holoviews [as 別名]
# 或者: from holoviews import Scatter [as 別名]
def test_scatter_ellipsis_value(self):
hv.Scatter(range(10))[...,'y']
示例12: test_scatter_ellipsis_value_missing
# 需要導入模塊: import holoviews [as 別名]
# 或者: from holoviews import Scatter [as 別名]
def test_scatter_ellipsis_value_missing(self):
try:
hv.Scatter(range(10))[...,'Non-existent']
except Exception as e:
if str(e) != "'Non-existent' is not an available value dimension":
raise AssertionError("Incorrect exception raised.")
示例13: test_holoviews_pane_bokeh_renderer
# 需要導入模塊: import holoviews [as 別名]
# 或者: from holoviews import Scatter [as 別名]
def test_holoviews_pane_bokeh_renderer(document, comm):
curve = hv.Curve([1, 2, 3])
pane = Pane(curve)
# Create pane
row = pane.get_root(document, comm=comm)
assert isinstance(row, BkRow)
assert len(row.children) == 1
model = row.children[0]
assert isinstance(model, Figure)
assert pane._models[row.ref['id']][0] is model
renderers = [r for r in model.renderers if isinstance(r, GlyphRenderer)]
assert len(renderers) == 1
assert isinstance(renderers[0].glyph, Line)
# Replace Pane.object
scatter = hv.Scatter([1, 2, 3])
pane.object = scatter
model = row.children[0]
assert isinstance(model, Figure)
renderers = [r for r in model.renderers if isinstance(r, GlyphRenderer)]
assert len(renderers) == 1
assert isinstance(renderers[0].glyph, Scatter)
assert pane._models[row.ref['id']][0] is model
# Cleanup
pane._cleanup(row)
assert pane._models == {}
示例14: opts
# 需要導入模塊: import holoviews [as 別名]
# 或者: from holoviews import Scatter [as 別名]
def opts(
self,
title="",
xlabel: str = "x",
ylabel: str = "y",
framewise: bool = True,
axiswise: bool = True,
normalize: bool = True,
*args,
**kwargs
):
"""
Update the plot parameters. Same as ``holoviews`` ``opts``.
The default values updates the plot axes independently when being \
displayed in a :class:`Holomap`.
"""
kwargs = self.update_kwargs(**kwargs)
# Add specific defaults to Scatter
scatter_kwargs = dict(kwargs)
if Store.current_backend == "bokeh":
scatter_kwargs["size"] = scatter_kwargs.get("size", 3.5)
elif Store.current_backend == "matplotlib":
scatter_kwargs["s"] = scatter_kwargs.get("s", 15)
self.plot = self.plot.opts(
holoviews.opts.Bivariate(
title=title,
xlabel=xlabel,
ylabel=ylabel,
framewise=framewise,
axiswise=axiswise,
normalize=normalize,
*args,
**kwargs
),
holoviews.opts.Scatter(
alpha=0.7,
xlabel=xlabel,
ylabel=ylabel,
framewise=framewise,
axiswise=axiswise,
normalize=normalize,
*args,
**scatter_kwargs
),
holoviews.opts.NdOverlay(normalize=normalize, framewise=framewise, axiswise=axiswise,),
)
示例15: opts
# 需要導入模塊: import holoviews [as 別名]
# 或者: from holoviews import Scatter [as 別名]
def opts(
self,
title="Walkers density distribution",
xlabel: str = "x",
ylabel: str = "y",
framewise: bool = True,
axiswise: bool = True,
normalize: bool = True,
*args,
**kwargs
):
"""
Update the plot parameters. Same as ``holoviews`` ``opts``.
The default values updates the plot axes independently when being \
displayed in a :class:`Holomap`.
"""
kwargs = self.update_kwargs(**kwargs)
# Add specific defaults to Scatter
scatter_kwargs = dict(kwargs)
if Store.current_backend == "bokeh":
scatter_kwargs["fill_color"] = scatter_kwargs.get("fill_color", "red")
scatter_kwargs["size"] = scatter_kwargs.get("size", 3.5)
elif Store.current_backend == "matplotlib":
scatter_kwargs["color"] = scatter_kwargs.get("color", "red")
scatter_kwargs["s"] = scatter_kwargs.get("s", 15)
self.plot = self.plot.opts(
holoviews.opts.Bivariate(
title=title,
xlabel=xlabel,
ylabel=ylabel,
framewise=framewise,
axiswise=axiswise,
normalize=normalize,
show_legend=False,
colorbar=True,
filled=True,
*args,
**kwargs
),
holoviews.opts.Scatter(
alpha=0.7,
xlabel=xlabel,
ylabel=ylabel,
framewise=framewise,
axiswise=axiswise,
normalize=normalize,
*args,
**scatter_kwargs
),
holoviews.opts.NdOverlay(normalize=normalize, framewise=framewise, axiswise=axiswise,),
)