本文整理匯總了Python中hickle.load方法的典型用法代碼示例。如果您正苦於以下問題:Python hickle.load方法的具體用法?Python hickle.load怎麽用?Python hickle.load使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類hickle
的用法示例。
在下文中一共展示了hickle.load方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: data_split
# 需要導入模塊: import hickle [as 別名]
# 或者: from hickle import load [as 別名]
def data_split(inputfile):
data = hkl.load(inputfile)
X = data['mat']
X_kspec = data['kmer']
y = data['y']
rs = ShuffleSplit(len(y), n_iter=1,random_state = 1)
X_kspec = X_kspec.reshape((X_kspec.shape[0],1024,4))
X = np.concatenate((X,X_kspec), axis = 1)
X = X[:,np.newaxis]
X = X.transpose((0,1,3,2))
for train_idx, test_idx in rs:
X_train = X[train_idx,:]
y_train = y[train_idx]
X_test = X[test_idx,:]
y_test = y[test_idx]
X_train = X_train.astype('float32')
y_train = y_train.astype('int32')
X_test = X_test.astype('float32')
y_test = y_test.astype('int32')
return [X_train, y_train, X_test, y_test]
#define the network architecture
示例2: load_inference_data
# 需要導入模塊: import hickle [as 別名]
# 或者: from hickle import load [as 別名]
def load_inference_data(data_path='./data'):
start_t = time.time()
data = {}
data['features'] = hickle.load(os.path.join(data_path, 'inference.features.hkl'))
with open(os.path.join(data_path, 'inference.file.names.pkl'), 'rb') as f:
data['file_names'] = pickle.load(f)
with open(os.path.join(data_path, 'inference.image.idxs.pkl'), 'rb') as f:
data['image_idxs'] = pickle.load(f)
for k, v in data.iteritems():
if type(v) == np.ndarray:
print
k, type(v), v.shape, v.dtype
else:
print
k, type(v), len(v)
end_t = time.time()
print
"Elapse time: %.2f" % (end_t - start_t)
return data
示例3: __init__
# 需要導入模塊: import hickle [as 別名]
# 或者: from hickle import load [as 別名]
def __init__(self, load=None, **kwargs):
if load is None:
args = {}
else:
args = util.load_params(load, 'train')
util.pp.pprint(args)
Default.__init__(self, **args)
if self.init:
self.learner.init()
self.learner.save()
else:
self.learner.restore()
print("Loading experiences from", self.data)
start_time = time.time()
self.experiences = hickle.load(self.data)
print("Loaded experiences in %d seconds." % (time.time() - start_time))
if 'initial' not in self.experiences:
self.experiences['initial'] = []
示例4: load_dataset
# 需要導入模塊: import hickle [as 別名]
# 或者: from hickle import load [as 別名]
def load_dataset(prefix, suffix):
filename = os.path.join(prefix, 'train_fc7_{}.hkl'.format(suffix))
X_train = hkl.load(filename).astype(np.float32)
filename = os.path.join(prefix, 'train_conf.hkl')
y_train = hkl.load(filename).astype(np.uint8)
filename = os.path.join(prefix, 'val_fc7_{}.hkl'.format(suffix))
X_val = hkl.load(filename).astype(np.float32)
filename = os.path.join(prefix, 'val_conf.hkl')
y_val = hkl.load(filename).astype(np.uint8)
filename = os.path.join(prefix, 'train_priors.hkl')
priors = hkl.load(filename).astype(np.float32).flatten()
# We just return all the arrays in order, as expected in main().
# (It doesn't matter how we do this as long as we can read them again.)
return priors, X_train, y_train, X_val, y_val
# ############################# Batch iterator ################################
# This is just a simple helper function iterating over training data in
# mini-batches of a particular size, optionally in random order. It assumes
# data is available as numpy arrays.
示例5: input_parser
# 需要導入模塊: import hickle [as 別名]
# 或者: from hickle import load [as 別名]
def input_parser():
description = 'Apply PCA over features'
p = argparse.ArgumentParser(description=description)
h_dsname = ('HDF5-file with features where to apply transformation')
p.add_argument('dsfile', help=h_dsname)
p.add_argument('pcafile', help='HDF5-file with PCA results')
p.add_argument('-o', '--outputfile', default=None,
help='Fullpath name for output-file')
g = p.add_mutually_exclusive_group()
g.add_argument('-e', '--energy', default=0.9, type=float,
help='Minimium energy of eigenvalues')
g.add_argument('-k', '--k', default=None, type=int,
help='Number of components to select')
h_pcasrc = 'Dict with keys (S, U, x_mean) pointing variables of pcafile'
p.add_argument('-ps', '--pca_src', default=PCA_SOURCE, help=h_pcasrc,
type=json.load)
p.add_argument('-ds', '--ds_src', default=DS_SOURCE,
help='source of hdf5-file with features')
p.add_argument('-v', '--verbose', action='store_true',
help='verbosity level')
p.add_argument('-vl', '--vloop', default=100, type=int,
help='Control frequency of verbose level inside loops')
return p
示例6: _load_ld_info_
# 需要導入模塊: import hickle [as 別名]
# 或者: from hickle import load [as 別名]
def _load_ld_info_(local_ld_dict_file, verbose=True, compressed=True, use_hickle=False):
t0 = time.time()
if use_hickle:
f = h5py.File(local_ld_dict_file, 'r')
ld_dict = hickle.load(f)
f.close()
else:
if compressed:
f = gzip.open(local_ld_dict_file, 'r')
else:
f = open(local_ld_dict_file, 'r')
ld_dict = pickle.load(f)
f.close()
t1 = time.time()
t = (t1 - t0)
if verbose:
print('\nIt took %d minutes and %0.2f seconds to load LD information from disk.' % (t / 60, t % 60))
return ld_dict
示例7: __call__
# 需要導入模塊: import hickle [as 別名]
# 或者: from hickle import load [as 別名]
def __call__(self, nn, train_history):
val_acc[self.iteration] = train_history[-1]['valid_accuracy']
params.append(nn.get_all_params_values())
#load the best parameters before training
示例8: __call__
# 需要導入模塊: import hickle [as 別名]
# 或者: from hickle import load [as 別名]
def __call__(self, nn, train_history):
val_loss[self.iteration] = train_history[-1]['valid_loss']
params.append(nn.get_all_params_values())
#load the best parameters before training
示例9: data_split
# 需要導入模塊: import hickle [as 別名]
# 或者: from hickle import load [as 別名]
def data_split(inputfile,reads_count):
data = hkl.load(inputfile)
reads_count= hkl.load(reads_count)
X = data['mat']
X_kspec = data['kmer']
reads_count = np.array(reads_count)
y = np.mean(reads_count, axis = 1)
y = np.log(y+1e-3)
rs = ShuffleSplit(len(y), n_iter=1,random_state = 1)
X_kspec = X_kspec.reshape((X_kspec.shape[0],1024,4))
X = np.concatenate((X,X_kspec), axis = 1)
X = X[:,np.newaxis]
X = X.transpose((0,1,3,2))
for train_idx, test_idx in rs:
X_train = X[train_idx,:]
y_train = y[train_idx]
X_test = X[test_idx,:]
y_test = y[test_idx]
X_train = X_train.astype('float32')
y_train = y_train.astype('float32')
X_test = X_test.astype('float32')
y_test = y_test.astype('float32')
print 'Data prepration done!'
return [X_train, y_train, X_test, y_test]
#define the network architecture
示例10: wideresnet50
# 需要導入模塊: import hickle [as 別名]
# 或者: from hickle import load [as 別名]
def wideresnet50(pooling):
dir_models = os.path.join(expanduser("~"), '.torch/wideresnet')
path_hkl = os.path.join(dir_models, 'wideresnet50.hkl')
if os.path.isfile(path_hkl):
params = hkl.load(path_hkl)
# convert numpy arrays to torch Variables
for k,v in sorted(params.items()):
print(k, v.shape)
params[k] = Variable(torch.from_numpy(v), requires_grad=True)
else:
os.system('mkdir -p ' + dir_models)
os.system('wget {} -O {}'.format(model_urls['wideresnet50'], path_hkl))
f = define_model(params)
model = WideResNet(pooling)
return model
示例11: load_coco_data
# 需要導入模塊: import hickle [as 別名]
# 或者: from hickle import load [as 別名]
def load_coco_data(data_path='./data', split='train'):
start_t = time.time()
data = {}
# use validation data to debug
if split == "debug":
split = 'val'
with open(os.path.join(os.path.join(data_path, 'train'), 'word_to_idx.pkl'), 'rb') as f:
data['word_to_idx'] = pickle.load(f)
data_path = os.path.join(data_path, split)
data['features'] = hickle.load(os.path.join(data_path, '%s.features.hkl' % split))
with open(os.path.join(data_path, '%s.file.names.pkl' % split), 'rb') as f:
data['file_names'] = pickle.load(f)
with open(os.path.join(data_path, '%s.captions.pkl' % split), 'rb') as f:
data['captions'] = pickle.load(f)
with open(os.path.join(data_path, '%s.image.idxs.pkl' % split), 'rb') as f:
data['image_idxs'] = pickle.load(f)
if split == 'train':
with open(os.path.join(data_path, 'word_to_idx.pkl'), 'rb') as f:
data['word_to_idx'] = pickle.load(f)
for k, v in data.iteritems():
if type(v) == np.ndarray:
print k, type(v), v.shape, v.dtype
else:
print k, type(v), len(v)
end_t = time.time()
print "Elapse time: %.2f" % (end_t - start_t)
return data
示例12: load_pickle
# 需要導入模塊: import hickle [as 別名]
# 或者: from hickle import load [as 別名]
def load_pickle(path):
with open(path, 'rb') as f:
file = pickle.load(f)
print ('Loaded %s..' % path)
return file
示例13: deserialize_from_file_json
# 需要導入模塊: import hickle [as 別名]
# 或者: from hickle import load [as 別名]
def deserialize_from_file_json(path):
f = open(path, 'r')
obj = json.load(f)
f.close()
return obj
示例14: deserialize_from_file_hdf5
# 需要導入模塊: import hickle [as 別名]
# 或者: from hickle import load [as 別名]
def deserialize_from_file_hdf5(path):
f = open(path, 'r')
obj = hickle.load(f)
f.close()
return obj
示例15: deserialize_from_file
# 需要導入模塊: import hickle [as 別名]
# 或者: from hickle import load [as 別名]
def deserialize_from_file(path):
f = open(path, 'rb')
obj = pickle.load(f)
f.close()
return obj