當前位置: 首頁>>代碼示例>>Python>>正文


Python heapq.heappop方法代碼示例

本文整理匯總了Python中heapq.heappop方法的典型用法代碼示例。如果您正苦於以下問題:Python heapq.heappop方法的具體用法?Python heapq.heappop怎麽用?Python heapq.heappop使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在heapq的用法示例。


在下文中一共展示了heapq.heappop方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: unload

# 需要導入模塊: import heapq [as 別名]
# 或者: from heapq import heappop [as 別名]
def unload(self, execute=True):
        commands = CommandList()

        undoWork = ConfigObject.prioritizeConfigs(self.currentConfig.values())
        heapq.heapify(undoWork)

        while undoWork:
            prio, config = heapq.heappop(undoWork)
            commands.extend(config.revert(self.currentConfig))

        # Finally, execute the commands.
        if execute and self.execCommands:
            self.execute(commands)

        self.previousCommands = commands
        self.currentConfig = dict()
        return True 
開發者ID:ParadropLabs,項目名稱:Paradrop,代碼行數:19,代碼來源:manager.py

示例2: getNextTodo

# 需要導入模塊: import heapq [as 別名]
# 或者: from heapq import heappop [as 別名]
def getNextTodo(self):
        """
        Like an iterator function, it returns each element in the list of plans in order.

        Returns:
            (function, args) : Each todo is returned just how the user first added it
            None             : None is returned when there are no more todo's
        """
        if len(self.workingPlans) == 0:
            return None
        else:
            prio, todo, abt = heapq.heappop(self.workingPlans)
            self.maxPriorityReturned = prio

            # After popping the next plan, check if this is a skipped function.
            # If so, then get the next plan.
            if todo.func in self.skipFunctions:
                return self.getNextTodo()
            else:
                self.abortPlans.append(abt)
                return (todo.func, todo.args) 
開發者ID:ParadropLabs,項目名稱:Paradrop,代碼行數:23,代碼來源:plangraph.py

示例3: dijkstra

# 需要導入模塊: import heapq [as 別名]
# 或者: from heapq import heappop [as 別名]
def dijkstra(graph):
        seen = set()            # élément traités
        d = {0: 0}           # distance map
        p = {}               # path map
        worklist = [(0, 0)]  # worklist d'éléments à traiter (distance, id)

        while worklist:  # tant qu'il reste des éléments dans la worklist à traiter

            dx, x_id = heappop(worklist)  # distance, and id
            if x_id in seen:                 # si l'élément est déjà traité on continue
                continue

            seen.add(x_id)                  # l'ajoute aux éléments traités

            for w, y in graph[x_id]:     # itère successeurs du noeud traité
                if y in seen:               # si le succ à déjà été traité continue
                    continue
                dy = dx + w                      # pondération du succ
                if y not in d or d[y] > dy:      # si succ n'est pas encore referencé ou new distance < alors update
                    d[y] = dy                    # met à jour la distance pour succ dans la distance map
                    heappush(worklist, (dy, y))  # met le succ dans la worklist (avec sa pondération)
                    p[y] = x_id                  # met à jour le prédecesseur le plus court pour succ
        # TODO: Do something with orphan BB
        return p 
開發者ID:RobinDavid,項目名稱:idasec,代碼行數:26,代碼來源:ida_utils.py

示例4: finalize

# 需要導入模塊: import heapq [as 別名]
# 或者: from heapq import heappop [as 別名]
def finalize(self):
        if self.ct < 1:
            return
        elif self.ct == 1:
            return 0

        total = ct = 0
        dtp = None
        while self.heap:
            if total == 0:
                if dtp is None:
                    dtp = heapq.heappop(self.heap)
                    continue

            dt = heapq.heappop(self.heap)
            diff = dt - dtp
            ct += 1
            total += total_seconds(diff)
            dtp = dt

        return float(total) / ct 
開發者ID:danielecook,項目名稱:Quiver-alfred,代碼行數:23,代碼來源:sqlite_udf.py

示例5: search

# 需要導入模塊: import heapq [as 別名]
# 或者: from heapq import heappop [as 別名]
def search(state, goal_state, fn):
    """Best-first search"""
    queue = []
    entrance = 0
    node = Node(state)
    while not node.is_goal(goal_state):
        node.expand()
        for child in node.children:
            queue_item = (fn(child), entrance, child)
            heapq.heappush(queue, queue_item)
            entrance += 1
        node = heapq.heappop(queue)[2]

    output = []
    output.append(node.state)
    for parent in node.parents():
        output.append(parent.state)
    output.reverse()

    return output 
開發者ID:mahdavipanah,項目名稱:pynpuzzle,代碼行數:22,代碼來源:best_first_seach.py

示例6: post_processing

# 需要導入模塊: import heapq [as 別名]
# 或者: from heapq import heappop [as 別名]
def post_processing(self, score, epoch, model):
        if self.freeze_model:
            return

        checkpoints_history_path = Path(
            self.checkpoints_history_folder, 
            '{}_epoch{}.pth'.format(self.calculation_name, epoch)
        )

        torch.save(self.get_state_dict(model), checkpoints_history_path)
        heapq.heappush(self.score_heap, (score, checkpoints_history_path))
        if len(self.score_heap) > self.checkpoints_topk:
            _, removing_checkpoint_path = heapq.heappop(self.score_heap)
            removing_checkpoint_path.unlink()
            self.logger.info('Removed checkpoint is {}'.format(removing_checkpoint_path))
        if score > self.best_score:
            self.best_score = score
            self.best_epoch = epoch
            torch.save(self.get_state_dict(model), self.best_checkpoint_path)
            self.logger.info('best model: {} epoch - {:.5}'.format(epoch, score))

        if self.scheduler.__class__.__name__ == 'ReduceLROnPlateau':
            self.scheduler.step(score)
        else:
            self.scheduler.step() 
開發者ID:sneddy,項目名稱:pneumothorax-segmentation,代碼行數:27,代碼來源:Learning.py

示例7: _loop_and_run_scheduled_events

# 需要導入模塊: import heapq [as 別名]
# 或者: from heapq import heappop [as 別名]
def _loop_and_run_scheduled_events(self):
    with self._work_ready_condition:
      while not self._quit_event.is_set():
        now = time.time()
        while self._queue and self._queue[0].eta <= now:
          event = heapq.heappop(self._queue)
          if not event.cancelled:
            # Only remove uncancelled events because when an Event is cancelled,
            # its entry in _key_to_events is replaced with the replacement
            # Event.
            if event.key:
              del self._key_to_events[event.key]
            self._work_ready_condition.release()
            self._thread_pool.submit(event.run)
            self._work_ready_condition.acquire()
          now = time.time()
        if self._queue:
          self._work_ready_condition.wait(self._queue[0].eta - now)
        else:
          self._work_ready_condition.wait() 
開發者ID:elsigh,項目名稱:browserscope,代碼行數:22,代碼來源:scheduled_executor.py

示例8: merge

# 需要導入模塊: import heapq [as 別名]
# 或者: from heapq import heappop [as 別名]
def merge(lists):
    merged_list = []

    heap = [(lst[0], i, 0) for i, lst in enumerate(lists) if lst]
    
    heapq.heapify(heap)

    while heap:
        #print(heap)
        val, list_ind, element_ind = heapq.heappop(heap)

        merged_list.append(val)

        if element_ind + 1 < len(lists[list_ind]):
            next_tuple = (lists[list_ind][element_ind + 1],
                          list_ind,
                          element_ind + 1)
            heapq.heappush(heap, next_tuple)
    return merged_list

#Test Cases 
開發者ID:amitrajitbose,項目名稱:Competitive_Programming,代碼行數:23,代碼來源:merge_k_Sorted_lists.py

示例9: calculate_distances

# 需要導入模塊: import heapq [as 別名]
# 或者: from heapq import heappop [as 別名]
def calculate_distances(graph, starting_vertex):
    distances = {vertex: float('inf') for vertex in graph}
    distances[starting_vertex] = 0

    pq = [(0, starting_vertex)]
    visit = [False for vertex in graph]
    visit[starting_vertex] = True
    while len(pq) > 0:
        # print (pq)
        current_distance, current_vertex = heapq.heappop(pq)
        visit[current_vertex] = True
        for neighbor, weight in graph[current_vertex].items():
            distance = current_distance + weight
            # Only consider this new path if it's better than any path we've already found.
            if not visit[neighbor] and distance < distances[neighbor]:
                distances[neighbor] = distance
                heapq.heappush(pq, (distance, neighbor))
    return sorted(distances.items()) 
開發者ID:amitrajitbose,項目名稱:Competitive_Programming,代碼行數:20,代碼來源:Dijkstra.py

示例10: calculate_distances

# 需要導入模塊: import heapq [as 別名]
# 或者: from heapq import heappop [as 別名]
def calculate_distances(graph, starting_vertex):
    distances = {vertex: float('inf') for vertex in graph}
    distances[starting_vertex] = 0
    pq = [(0, starting_vertex)]
    visited = 0
    visit = [False] * len(graph)
    while len(pq) > 0:
        if visited == len(graph):
            break
        # print (pq)
        current_distance, current_vertex = heapq.heappop(pq)
        if not visit[current_vertex]:
            visit[current_vertex] = True
            visited += 1
            for neighbor, weight in graph[current_vertex].items():
                distance = current_distance + weight
                if not visit[neighbor] and distance < distances[neighbor]:
                    distances[neighbor] = distance
                    heapq.heappush(pq, (distance, neighbor))
    return distances 
開發者ID:amitrajitbose,項目名稱:Competitive_Programming,代碼行數:22,代碼來源:Dijkstra_Optimized.py

示例11: __lt__

# 需要導入模塊: import heapq [as 別名]
# 或者: from heapq import heappop [as 別名]
def __lt__(self, other_node):
        """Comparison for priority queue.

        Nodes with high gain are higher priority than nodes with low gain.

        heapq.heappush only need the '<' operator.
        heapq.heappop take the smallest item first (smaller is higher
        priority).

        Parameters
        -----------
        other_node : TreeNode
            The node to compare with.
        """
        if self.split_info is None or other_node.split_info is None:
            raise ValueError("Cannot compare nodes with split_info")
        return self.split_info.gain > other_node.split_info.gain 
開發者ID:ogrisel,項目名稱:pygbm,代碼行數:19,代碼來源:grower.py

示例12: __pool_main

# 需要導入模塊: import heapq [as 別名]
# 或者: from heapq import heappop [as 別名]
def __pool_main(self, mesh_index):
        mesh = self.__meshes[mesh_index]
        queue = self.__build_queue(self.__fe[mesh_index, :, :mesh.edges_count], mesh.edges_count)
        # recycle = []
        # last_queue_len = len(queue)
        last_count = mesh.edges_count + 1
        mask = np.ones(mesh.edges_count, dtype=np.bool)
        edge_groups = MeshUnion(mesh.edges_count, self.__fe.device)
        while mesh.edges_count > self.__out_target:
            value, edge_id = heappop(queue)
            edge_id = int(edge_id)
            if mask[edge_id]:
                self.__pool_edge(mesh, edge_id, mask, edge_groups)
        mesh.clean(mask, edge_groups)
        fe = edge_groups.rebuild_features(self.__fe[mesh_index], mask, self.__out_target)
        self.__updated_fe[mesh_index] = fe 
開發者ID:ranahanocka,項目名稱:MeshCNN,代碼行數:18,代碼來源:mesh_pool.py

示例13: get_skyline

# 需要導入模塊: import heapq [as 別名]
# 或者: from heapq import heappop [as 別名]
def get_skyline(lrh):
    """
    Wortst Time Complexity: O(NlogN)
    :type buildings: List[List[int]]
    :rtype: List[List[int]]
    """
    skyline, live = [], []
    i, n = 0, len(lrh)
    while i < n or live:
        if not live or i < n and lrh[i][0] <= -live[0][1]:
            x = lrh[i][0]
            while i < n and lrh[i][0] == x:
                heapq.heappush(live, (-lrh[i][2], -lrh[i][1]))
                i += 1
        else:
            x = -live[0][1]
            while live and -live[0][1] <= x:
                heapq.heappop(live)
        height = len(live) and -live[0][0]
        if not skyline or height != skyline[-1][1]:
            skyline += [x, height],
    return skyline 
開發者ID:HoussemCharf,項目名稱:FunUtils,代碼行數:24,代碼來源:skyline.py

示例14: run

# 需要導入模塊: import heapq [as 別名]
# 或者: from heapq import heappop [as 別名]
def run(self):
        self.__running = True
        while self.__running:
            self.__signal.acquire()
            if not self.__jobs:
                self.__signal.wait()

            else:
                now = datetime.datetime.now()
                while (self.__jobs[0] < now):
                    job = heapq.heappop(self.__jobs)

                    action = job()
                    if action is not False:
                        self.__runner(action)

                    heapq.heappush(self.__jobs, job)

                logging.getLogger("scheduler").debug("Sleeping %s seconds", (self.__jobs[0] - now))
                self.__signal.wait((self.__jobs[0] - now).total_seconds())

            self.__signal.release() 
開發者ID:SalikLP,項目名稱:classification-of-encrypted-traffic,代碼行數:24,代碼來源:scheduler.py

示例15: run_until_complete

# 需要導入模塊: import heapq [as 別名]
# 或者: from heapq import heappop [as 別名]
def run_until_complete(self):
        # Start all the coroutines.
        for coro in self._new:
            wait_for = coro.send(None)
            heapq.heappush(self._waiting, Task(wait_for, coro))
        # Keep running until there is no more work to do.
        while self._waiting:
            now = datetime.datetime.now()
            # Get the coroutine with the soonest resumption time.
            task = heapq.heappop(self._waiting)
            if now < task.waiting_until:
                # We're ahead of schedule; wait until it's time to resume.
                delta = task.waiting_until - now
                time.sleep(delta.total_seconds())
                now = datetime.datetime.now()
            try:
                # It's time to resume the coroutine.
                wait_until = task.coro.send(now)
                heapq.heappush(self._waiting, Task(wait_until, task.coro))
            except StopIteration:
                # The coroutine is done.
                pass 
開發者ID:fluentpython,項目名稱:concurrency2017,代碼行數:24,代碼來源:launchpad.py


注:本文中的heapq.heappop方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。