本文整理匯總了Python中healpy.nside2npix方法的典型用法代碼示例。如果您正苦於以下問題:Python healpy.nside2npix方法的具體用法?Python healpy.nside2npix怎麽用?Python healpy.nside2npix使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類healpy
的用法示例。
在下文中一共展示了healpy.nside2npix方法的8個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: __init__
# 需要導入模塊: import healpy [as 別名]
# 或者: from healpy import nside2npix [as 別名]
def __init__(self,comp=1.,ramin=None,ramax=None,keepexclude=False,
**kwargs):
self._comp= comp
if ramin is None: self._ramin= -1.
else: self._ramin= ramin
if ramax is None: self._ramax= 361.
else: self._ramax= ramax
gaia_tools.select.tgasSelect.__init__(self,**kwargs)
if not keepexclude:
self._exclude_mask_skyonly[:]= False
if not ramin is None:
theta,phi= healpy.pix2ang(2**5,
numpy.arange(healpy.nside2npix(2**5)),
nest=True)
ra= 180./numpy.pi*phi
self._exclude_mask_skyonly[(ra < ramin)+(ra > ramax)]= True
return None
示例2: save_as_image
# 需要導入模塊: import healpy [as 別名]
# 或者: from healpy import nside2npix [as 別名]
def save_as_image(region, filename):
"""
Convert a MIMAS region (.mim) file into a image (eg .png)
Parameters
----------
region : :class:`AegeanTools.regions.Region`
Region of interest.
filename : str
Output filename.
"""
import healpy as hp
pixels = list(region.get_demoted())
order = region.maxdepth
m = np.arange(hp.nside2npix(2**order))
m[:] = 0
m[pixels] = 1
hp.write_map(filename, m, nest=True, coord='C')
return
示例3: mapFromClm
# 需要導入模塊: import healpy [as 別名]
# 或者: from healpy import nside2npix [as 別名]
def mapFromClm(clm, nside):
"""
Given an array of C_{lm} values, produce a pixel-power-map (non-Nested) for
healpix pixelation with nside
@param clm: Array of C_{lm} values (inc. 0,0 element)
@param nside: Nside of the healpix pixelation
return: Healpix pixels
Use real_sph_harm for the map
"""
npixels = hp.nside2npix(nside)
pixels = hp.pix2ang(nside, np.arange(npixels), nest=False)
h = np.zeros(npixels)
ind = 0
maxl = int(np.sqrt(len(clm))) - 1
for ll in range(maxl + 1):
for mm in range(-ll, ll + 1):
h += clm[ind] * real_sph_harm(mm, ll, pixels[1], pixels[0])
ind += 1
return h
示例4: makeHealpixMap
# 需要導入模塊: import healpy [as 別名]
# 或者: from healpy import nside2npix [as 別名]
def makeHealpixMap(ra, dec, nside=1024, nest=False):
# convert a ra/dec catalog into healpix map with counts per cell
import healpy as hp
ipix = hp.ang2pix(nside, (90-dec)/180*np.pi, ra/180*np.pi, nest=nest)
return np.bincount(ipix, minlength=hp.nside2npix(nside))
示例5: getGrid
# 需要導入模塊: import healpy [as 別名]
# 或者: from healpy import nside2npix [as 別名]
def getGrid(nside, nest=False, return_vertices=False):
pixels = np.arange(hp.nside2npix(nside))
theta, phi = hp.pix2ang(nside, pixels, nest=nest)
ra = phi*180/np.pi
dec = 90 - theta*180/np.pi
if return_vertices:
vertices = getHealpixVertices(pixels, nside, nest=nest)
return pixels, ra, dec, vertices
return pixels, ra, dec
示例6: anis_basis
# 需要導入模塊: import healpy [as 別名]
# 或者: from healpy import nside2npix [as 別名]
def anis_basis(psr_locs, lmax, nside=32):
"""
Calculate the correlation basis matrices using the pixel-space
transormations
@param psr_locs: Location of the pulsars [phi, theta]
@param lmax: Maximum l to go up to
@param nside: What nside to use in the pixelation [32]
Note: GW directions are in direction of GW propagation
"""
pphi = psr_locs[:, 0]
ptheta = psr_locs[:, 1]
# Create the pixels
npixels = hp.nside2npix(nside)
pixels = hp.pix2ang(nside, np.arange(npixels), nest=False)
gwtheta = pixels[0]
gwphi = pixels[1]
# Create the signal response matrix
F_e = signalResponse_fast(ptheta, pphi, gwtheta, gwphi)
# Loop over all (l,m)
basis = []
nclm = (lmax + 1) ** 2
clmindex = 0
for ll in range(0, lmax + 1):
for mm in range(-ll, ll + 1):
clm = np.zeros(nclm)
clm[clmindex] = 1.0
basis.append(getCov(clm, nside, F_e))
clmindex += 1
return np.array(basis)
示例7: orfFromMap_fast
# 需要導入模塊: import healpy [as 別名]
# 或者: from healpy import nside2npix [as 別名]
def orfFromMap_fast(psr_locs, usermap, response=None):
"""
Calculate an ORF from a user-defined sky map.
@param psr_locs: Location of the pulsars [phi, theta]
@param usermap: Provide a healpix map for GW power
Note: GW directions are in direction of GW propagation
"""
if response is None:
pphi = psr_locs[:, 0]
ptheta = psr_locs[:, 1]
# Create the pixels
nside = hp.npix2nside(len(usermap))
npixels = hp.nside2npix(nside)
pixels = hp.pix2ang(nside, np.arange(npixels), nest=False)
gwtheta = pixels[0]
gwphi = pixels[1]
# Create the signal response matrix
F_e = signalResponse_fast(ptheta, pphi, gwtheta, gwphi)
elif response is not None:
F_e = response
# Double the power (one for each polarization)
sh = np.array([usermap, usermap]).T.flatten()
# Create the cross-pulsar covariance
hdcov_F = np.dot(F_e * sh, F_e.T)
# The pulsar term is added (only diagonals: uncorrelated)
return hdcov_F + np.diag(np.diag(hdcov_F))
示例8: array2healpix
# 需要導入模塊: import healpy [as 別名]
# 或者: from healpy import nside2npix [as 別名]
def array2healpix(image_array, nside=16, max_iter=3, **kwargs):
"""Return a healpix ring-ordered map corresponding to a lat-lon map image array."""
if hp is None:
raise ImportError(
"Please install the `healpy` Python package to "
"enable this feature. See `https://healpy.readthedocs.io`."
)
# Starting value for the zoom
zoom = 2
# Keep track of the number of unseen pixels
unseen = 1
ntries = 0
while unseen > 0:
# Make the image bigger so we have good angular coverage
image_array = ndimage.zoom(image_array, zoom)
# Convert to a healpix map
theta = np.linspace(0, np.pi, image_array.shape[0])[:, None]
phi = np.linspace(-np.pi, np.pi, image_array.shape[1])[::-1]
pix = hp.ang2pix(nside, theta, phi, nest=False)
healpix_map = (
np.ones(hp.nside2npix(nside), dtype=np.float64) * hp.UNSEEN
)
healpix_map[pix] = image_array
# Count the unseen pixels
unseen = np.count_nonzero(healpix_map == hp.UNSEEN)
# Did we do this too many times?
ntries += 1
if ntries > max_iter:
raise ValueError(
"Maximum number of iterations exceeded. Either decreaser `nside` or increase `max_iter`."
)
return healpix_map