本文整理匯總了Python中h5py.File方法的典型用法代碼示例。如果您正苦於以下問題:Python h5py.File方法的具體用法?Python h5py.File怎麽用?Python h5py.File使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類h5py
的用法示例。
在下文中一共展示了h5py.File方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: download
# 需要導入模塊: import h5py [as 別名]
# 或者: from h5py import File [as 別名]
def download(self, sid):
'''
ny.data['hcp'].download(sid) downloads all the data understood by neuropythy for the given
HCP subject id; the data are downloaded from the Amazon S3 into the path given by the
'hcp_auto_path' config item then returns a list of the downloaded files.
'''
# we can do this in quite a sneaky way: get the subject, get their filemap, force all the
# paths in the subject to be downloaded using the pseudo-path, return the cache path!
sub = self.subjects[sid]
fmap = sub.meta_data['file_map']
ppath = fmap.path
fls = []
logging.info('Downloading HCP subject %s structure data...' % (sid,))
for fl in six.iterkeys(fmap.data_files):
logging.info(' * Downloading file %s for subject %s' % (fl, sid))
try:
fls.append(ppath.local_path(fl))
except ValueError as e:
if len(e.args) != 1 or not e.args[0].startswith('getpath:'): raise
else: logging.info(' (File %s not found for subject %s)' % (fl, sid))
logging.info('Subject %s donwnload complete!' % (sid,))
return fls
# we wrap this in a lambda so that it gets loaded when requested (in case the config changes between
# when this gets run and when the dataset gets requested)
示例2: __init__
# 需要導入模塊: import h5py [as 別名]
# 或者: from h5py import File [as 別名]
def __init__(self, map_fname=None):
"""
Args:
map_fname (Optional[str]): Filename of the map. Defaults
to :obj:`None`, meaning that the default location
is used.
"""
if map_fname is None:
map_fname = os.path.join(
data_dir(),
'leike_ensslin_2019',
'simple_cube.h5'
)
self._data = {}
with h5py.File(map_fname) as f:
self._data['mean'] = f['mean'][:]
self._data['std'] = f['std'][:]
self._shape = self._data['mean'].shape
示例3: fetch
# 需要導入模塊: import h5py [as 別名]
# 或者: from h5py import File [as 別名]
def fetch(clobber=False):
"""
Downloads the 3D dust map of Leike & Ensslin (2019).
Args:
clobber (Optional[bool]): If ``True``, any existing file will be
overwritten, even if it appears to match. If ``False`` (the
default), ``fetch()`` will attempt to determine if the dataset
already exists. This determination is not 100\% robust against data
corruption.
"""
dest_dir = fname_pattern = os.path.join(data_dir(), 'leike_ensslin_2019')
fname = os.path.join(dest_dir, 'simple_cube.h5')
# Check if the FITS table already exists
md5sum = 'f54e01c253453117e3770575bed35078'
if (not clobber) and fetch_utils.check_md5sum(fname, md5sum):
print('File appears to exist already. Call `fetch(clobber=True)` '
'to force overwriting of existing file.')
return
# Download from the server
url = 'https://zenodo.org/record/2577337/files/simple_cube.h5?download=1'
fetch_utils.download_and_verify(url, md5sum, fname)
示例4: __init__
# 需要導入模塊: import h5py [as 別名]
# 或者: from h5py import File [as 別名]
def __init__(self, bh_dir=None):
"""
Args:
bh_dir (Optional[str]): The directory containing the Burstein &
Heiles dust map. Defaults to `None`, meaning that the default
directory is used.
"""
if bh_dir is None:
bh_dir = os.path.join(data_dir_default, 'bh')
f = h5py.File(os.path.join(bh_dir, 'bh.h5'), 'r')
self._hinorth = f['hinorth'][:]
self._hisouth = f['hisouth'][:]
self._rednorth = f['rednorth'][:]
self._redsouth = f['redsouth'][:]
f.close()
示例5: test_NDArrayIter_h5py
# 需要導入模塊: import h5py [as 別名]
# 或者: from h5py import File [as 別名]
def test_NDArrayIter_h5py():
if not h5py:
return
data, labels = _init_NDArrayIter_data('ndarray')
try:
os.remove('ndarraytest.h5')
except OSError:
pass
with h5py.File('ndarraytest.h5') as f:
f.create_dataset('data', data=data)
f.create_dataset('label', data=labels)
_test_last_batch_handle(f['data'], f['label'])
_test_last_batch_handle(f['data'], [])
_test_last_batch_handle(f['data'])
try:
os.remove("ndarraytest.h5")
except OSError:
pass
示例6: read_data
# 需要導入模塊: import h5py [as 別名]
# 或者: from h5py import File [as 別名]
def read_data(data_fname):
""" Read saved data in HDF5 format.
Args:
data_fname: The filename of the file from which to read the data.
Returns:
A dictionary whose keys will vary depending on dataset (but should
always contain the keys 'train_data' and 'valid_data') and whose
values are numpy arrays.
"""
try:
with h5py.File(data_fname, 'r') as hf:
data_dict = {k: np.array(v) for k, v in hf.items()}
return data_dict
except IOError:
print("Cannot open %s for reading." % data_fname)
raise
示例7: shuffle
# 需要導入模塊: import h5py [as 別名]
# 或者: from h5py import File [as 別名]
def shuffle(labels, num_epochs=50, path=None, start_time=time.time()):
order_path = '{path}/order_{num_epochs}.h5' \
.format(path=path, num_epochs=num_epochs)
if path is not None and os.path.isfile(order_path):
with h5py.File(order_path, 'r') as f:
order = f['order'][:]
else:
order = -np.ones([num_epochs, labels.size(0)], dtype=int)
for epoch in range(num_epochs):
order[epoch] = np.random.permutation(labels.size(0))
print_freq = min([100, (num_epochs-1) // 5 + 1])
print_me = (epoch == 0 or epoch == num_epochs-1 or (epoch+1) % print_freq == 0)
if print_me:
print('{epoch:4d}/{num_epochs:4d} e; '.format(epoch=epoch+1, num_epochs=num_epochs), end='')
print('generate random order; {time:8.3f} s'.format(time=time.time()-start_time))
if path is not None:
with h5py.File(order_path, 'w') as f:
f.create_dataset('order', data=order, compression='gzip', compression_opts=9)
print('random order; {time:8.3f} s'.format(time=time.time()-start_time))
return torch.from_numpy(order)
示例8: __init__
# 需要導入模塊: import h5py [as 別名]
# 或者: from h5py import File [as 別名]
def __init__(self, path, ids, name='default',
max_examples=None, is_train=True):
self._ids = list(ids)
self.name = name
self.is_train = is_train
if max_examples is not None:
self._ids = self._ids[:max_examples]
filename = 'data.hdf5'
file = os.path.join(path, filename)
log.info("Reading %s ...", file)
self.data = h5py.File(file, 'r')
log.info("Reading Done: %s", file)
示例9: save_hdf5
# 需要導入模塊: import h5py [as 別名]
# 或者: from h5py import File [as 別名]
def save_hdf5(X, y, path):
"""Save data as a HDF5 file.
Args:
X (numpy or scipy sparse matrix): Data matrix
y (numpy array): Target vector.
path (str): Path to the HDF5 file to save data.
"""
with h5py.File(path, 'w') as f:
is_sparse = 1 if sparse.issparse(X) else 0
f['issparse'] = is_sparse
f['target'] = y
if is_sparse:
if not sparse.isspmatrix_csr(X):
X = X.tocsr()
f['shape'] = np.array(X.shape)
f['data'] = X.data
f['indices'] = X.indices
f['indptr'] = X.indptr
else:
f['data'] = X
示例10: __init__
# 需要導入模塊: import h5py [as 別名]
# 或者: from h5py import File [as 別名]
def __init__(self, ids, name='default',
max_examples=None, is_train=True):
self._ids = list(ids)
self.name = name
self.is_train = is_train
if max_examples is not None:
self._ids = self._ids[:max_examples]
filename = 'data.hdf5'
file = os.path.join(__PATH__, filename)
log.info("Reading %s ...", file)
try:
self.data = h5py.File(file, 'r+')
except:
raise IOError('Dataset not found. Please make sure the dataset was downloaded.')
log.info("Reading Done: %s", file)
示例11: __init__
# 需要導入模塊: import h5py [as 別名]
# 或者: from h5py import File [as 別名]
def __init__(self, n_pop=4, **specs):
FortneyMarleyCahoyMix1.__init__(self, **specs)
# number of category
self.n_pop = int(n_pop)
# read forecaster parameter file
downloadsdir = get_downloads_dir()
filename = 'fitting_parameters.h5'
parampath = os.path.join(downloadsdir, filename)
if not os.path.exists(parampath) and os.access(downloadsdir, os.W_OK|os.X_OK):
fitting_url = 'https://raw.github.com/dsavransky/forecaster/master/fitting_parameters.h5'
self.vprint("Fetching Forecaster fitting parameters from %s to %s" % (fitting_url, parampath))
try:
urlretrieve(fitting_url, parampath)
except:
self.vprint("Error: Remote fetch failed. Fetch manually or see install instructions.")
assert os.path.exists(parampath), 'fitting_parameters.h5 must exist in /.EXOSIMS/downloads'
h5 = h5py.File(parampath, 'r')
self.all_hyper = h5['hyper_posterior'][:]
h5.close()
示例12: save_h5_data_label_normal
# 需要導入模塊: import h5py [as 別名]
# 或者: from h5py import File [as 別名]
def save_h5_data_label_normal(h5_filename, data, label, normal,
data_dtype='float32', label_dtype='uint8', noral_dtype='float32'):
h5_fout = h5py.File(h5_filename)
h5_fout.create_dataset(
'data', data=data,
compression='gzip', compression_opts=4,
dtype=data_dtype)
h5_fout.create_dataset(
'normal', data=normal,
compression='gzip', compression_opts=4,
dtype=normal_dtype)
h5_fout.create_dataset(
'label', data=label,
compression='gzip', compression_opts=1,
dtype=label_dtype)
h5_fout.close()
# Write numpy array data and label to h5_filename
示例13: load_matlab_file
# 需要導入模塊: import h5py [as 別名]
# 或者: from h5py import File [as 別名]
def load_matlab_file(path_file, name_field):
"""
load '.mat' files
inputs:
path_file, string containing the file path
name_field, string containig the field name (default='shape')
warning:
'.mat' files should be saved in the '-v7.3' format
"""
db = h5py.File(path_file, 'r')
ds = db[name_field]
try:
if 'ir' in ds.keys():
data = np.asarray(ds['data'])
ir = np.asarray(ds['ir'])
jc = np.asarray(ds['jc'])
out = sp.csc_matrix((data, ir, jc)).astype(np.float32)
except AttributeError:
# Transpose in case is a dense matrix because of the row- vs column- major ordering between python and matlab
out = np.asarray(ds).astype(np.float32).T
db.close()
return out
示例14: write_amplitudes
# 需要導入模塊: import h5py [as 別名]
# 或者: from h5py import File [as 別名]
def write_amplitudes(t1, t2, filename="t_amplitudes.hdf5"):
task_list = generate_max_task_list(t2.shape)
if rank == 0:
print("writing t amplitudes to file")
feri = h5py.File(filename, 'w')
ds_type = t2.dtype
out_t1 = feri.create_dataset('t1', t1.shape, dtype=ds_type)
out_t2 = feri.create_dataset('t2', t2.shape, dtype=ds_type)
task_list = generate_max_task_list(t1.shape)
for block in task_list:
which_slice = [slice(*x) for x in block]
out_t1[tuple(which_slice)] = t1[tuple(which_slice)]
task_list = generate_max_task_list(t2.shape)
for block in task_list:
which_slice = [slice(*x) for x in block]
out_t2[tuple(which_slice)] = t2[tuple(which_slice)]
feri.close()
return
示例15: read_eom_amplitudes
# 需要導入模塊: import h5py [as 別名]
# 或者: from h5py import File [as 別名]
def read_eom_amplitudes(vec_shape, filename="reom_amplitudes.hdf5", vec=None):
task_list = generate_max_task_list(vec_shape)
read_success = False
return False, None # TODO: find a way to make the amplitudes are consistent
# with the signs of the eris/t-amplitudes when restarting
print("attempting to read in eom amplitudes from file ", filename)
if os.path.isfile(filename):
print("reading eom amplitudes from file. shape=", vec_shape)
feri = h5py.File(filename, 'r', driver='mpio', comm=MPI.COMM_WORLD)
saved_v = feri['v']
if vec is None:
vec = np.empty(vec_shape,dtype=saved_v.dtype)
assert(saved_v.shape == vec_shape)
task_list = generate_max_task_list(vec.shape)
for block in task_list:
which_slice = [slice(*x) for x in block]
vec[tuple(which_slice)] = saved_v[tuple(which_slice)]
feri.close()
read_success = True
if vec is not None and vec_shape[-1] == 1:
vec = vec.reshape(vec_shape[:-1])
return read_success, vec