本文整理匯總了Python中gym.utils方法的典型用法代碼示例。如果您正苦於以下問題:Python gym.utils方法的具體用法?Python gym.utils怎麽用?Python gym.utils使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類gym
的用法示例。
在下文中一共展示了gym.utils方法的14個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: change_vehicles
# 需要導入模塊: import gym [as 別名]
# 或者: from gym import utils [as 別名]
def change_vehicles(self, vehicle_class_path: str) -> 'AbstractEnv':
"""
Change the type of all vehicles on the road
:param vehicle_class_path: The path of the class of behavior for other vehicles
Example: "highway_env.vehicle.behavior.IDMVehicle"
:return: a new environment with modified behavior model for other vehicles
"""
vehicle_class = utils.class_from_path(vehicle_class_path)
env_copy = copy.deepcopy(self)
vehicles = env_copy.road.vehicles
for i, v in enumerate(vehicles):
if v is not env_copy.vehicle:
vehicles[i] = vehicle_class.create_from(v)
return env_copy
示例2: _seed
# 需要導入模塊: import gym [as 別名]
# 或者: from gym import utils [as 別名]
def _seed(self, seed=None):
self.np_random, seed = gym.utils.seeding.np_random(seed)
self.robot.np_random = self.np_random # use the same np_randomizer for robot as for env
return [seed]
示例3: get_keys_to_action
# 需要導入模塊: import gym [as 別名]
# 或者: from gym import utils [as 別名]
def get_keys_to_action(self):
"""Get mapping from keyboard keys to actions.
Required by gym.utils.play in environment or top level wrapper.
Returns:
{
Unicode code point for keyboard key: action (formatted for step()),
...
}
"""
# Based on gym AtariEnv.get_keys_to_action()
keyword_to_key = {
"UP": ord("w"),
"DOWN": ord("s"),
"LEFT": ord("a"),
"RIGHT": ord("d"),
"FIRE": ord(" "),
}
keys_to_action = {}
for action_id, action_meaning in enumerate(self.action_meanings):
keys_tuple = tuple(sorted([
key for keyword, key in keyword_to_key.items()
if keyword in action_meaning]))
assert keys_tuple not in keys_to_action
keys_to_action[keys_tuple] = action_id
# Special actions:
keys_to_action[(ord("r"),)] = self.RETURN_DONE_ACTION
keys_to_action[(ord("c"),)] = self.TOGGLE_WAIT_ACTION
keys_to_action[(ord("n"),)] = self.WAIT_MODE_NOOP_ACTION
return keys_to_action
示例4: _seed
# 需要導入模塊: import gym [as 別名]
# 或者: from gym import utils [as 別名]
def _seed(self, seed=None):
from gym.utils import seeding
self.np_random, seed = seeding.np_random(seed)
return [seed]
示例5: __init__
# 需要導入模塊: import gym [as 別名]
# 或者: from gym import utils [as 別名]
def __init__(self, game='pong', obs_type='ram', frameskip=(2, 5), repeat_action_probability=0.):
"""Frameskip should be either a tuple (indicating a random range to
choose from, with the top value exclude), or an int."""
utils.EzPickle.__init__(self, game, obs_type)
assert obs_type in ('ram', 'image')
self.game_path = atari_py.get_game_path(game)
if not os.path.exists(self.game_path):
raise IOError('You asked for game %s but path %s does not exist'%(game, self.game_path))
self._obs_type = obs_type
self.frameskip = frameskip
self.ale = atari_py.ALEInterface()
self.viewer = None
# Tune (or disable) ALE's action repeat:
# https://github.com/openai/gym/issues/349
assert isinstance(repeat_action_probability, (float, int)), "Invalid repeat_action_probability: {!r}".format(repeat_action_probability)
self.ale.setFloat('repeat_action_probability'.encode('utf-8'), repeat_action_probability)
self.seed()
self._action_set = self.ale.getMinimalActionSet()
self.action_space = spaces.Discrete(len(self._action_set))
(screen_width,screen_height) = self.ale.getScreenDims()
if self._obs_type == 'ram':
self.observation_space = spaces.Box(low=0, high=255, dtype=np.uint8, shape=(128,))
elif self._obs_type == 'image':
self.observation_space = spaces.Box(low=0, high=255, shape=(screen_height, screen_width, 3), dtype=np.uint8)
else:
raise error.Error('Unrecognized observation type: {}'.format(self._obs_type))
示例6: __init__
# 需要導入模塊: import gym [as 別名]
# 或者: from gym import utils [as 別名]
def __init__(self, width=5, height=5, render_type='cubes', num_objects=5,
seed=None):
self.width = width
self.height = height
self.render_type = render_type
self.num_objects = num_objects
self.num_actions = 4 * self.num_objects # Move NESW
self.colors = utils.get_colors(num_colors=max(9, self.num_objects))
self.np_random = None
self.game = None
self.target = None
# Initialize to pos outside of env for easier collision resolution.
self.objects = [[-1, -1] for _ in range(self.num_objects)]
# If True, then check for collisions and don't allow two
# objects to occupy the same position.
self.collisions = True
self.action_space = spaces.Discrete(self.num_actions)
self.observation_space = spaces.Box(
low=0, high=1,
shape=(3, self.width, self.height),
dtype=np.float32
)
self.seed(seed)
self.reset()
示例7: __init__
# 需要導入模塊: import gym [as 別名]
# 或者: from gym import utils [as 別名]
def __init__(self, screen_ratio=4, coords_ratio=4, use_color=True, use_rc_frame=True, stack=3, frame_skip=4, action_repeat=4):
utils.EzPickle.__init__(self, 'montezuma_revenge', 'image')
self.env = gym.make('MontezumaRevengeNoFrameskip-v4').unwrapped
self.ale = self.env.ale
self.ale.setFloat('repeat_action_probability'.encode('utf-8'), 0) # deterministic
self.max_lives = self.ale.lives()
# observations
self.screen_ratio = screen_ratio
self.original_height = 224
self.original_width = 160
self.screen_height = self.original_height // screen_ratio
self.screen_width = self.original_width // screen_ratio
self.screen_shape = (self.screen_height, self.screen_width)
self.use_color = use_color
self.use_rc_frame = use_rc_frame
self.stack = stack
self.frame_skip = frame_skip
n_frames = stack * (3 * use_color + 1 * (not use_color) + use_rc_frame)
self.frames = deque([], maxlen=(self.frame_skip * (self.stack - 1) + 1))
self.observation_space = spaces.Box(low=0, high=255, shape=(self.screen_height, self.screen_width, n_frames))
# coordinates
self.coords_ratio = coords_ratio
assert coords_ratio % screen_ratio == 0, (coords_ratio, screen_ratio)
self.coords_screen_ratio = coords_ratio // screen_ratio
self.coords_height = self.original_height // coords_ratio
self.coords_width = self.original_width // coords_ratio
self.coords_shape = (self.coords_height, self.coords_width)
# actions
self.action_repeat = action_repeat
self.action_names = ['LEFTFIRE', 'UP', 'RIGHTFIRE', 'LEFT', 'NOOP', 'RIGHT', 'DOWN']
self.action_list = [actions[n] for n in self.action_names]
n_actions = len(self.action_list)
self.action_space = spaces.Discrete(n_actions)
# miscellaneous
frame_name = 'RGB' if use_color else 'G'
if use_rc_frame: frame_name += 'C'
self.name = 'CustomMontezuma_obs{}x{}x{}x{}_qframes{}x{}x{}_skip{}_repeat{}-v0'.format(
*self.screen_shape, frame_name, stack, *self.coords_shape, n_actions, frame_skip, action_repeat)
示例8: __init__
# 需要導入模塊: import gym [as 別名]
# 或者: from gym import utils [as 別名]
def __init__(self, game='pong', obs_type='ram', frameskip=(2, 5), repeat_action_probability=0.):
"""Frameskip should be either a tuple (indicating a random range to
choose from, with the top value exclude), or an int."""
utils.EzPickle.__init__(self, game, obs_type, frameskip, repeat_action_probability)
assert obs_type in ('ram', 'image')
self.game_path = atari_py.get_game_path(game)
if not os.path.exists(self.game_path):
raise IOError('You asked for game %s but path %s does not exist'%(game, self.game_path))
self._obs_type = obs_type
self.frameskip = frameskip
self.ale = atari_py.ALEInterface()
self.viewer = None
# Tune (or disable) ALE's action repeat:
# https://github.com/openai/gym/issues/349
assert isinstance(repeat_action_probability, (float, int)), "Invalid repeat_action_probability: {!r}".format(repeat_action_probability)
self.ale.setFloat('repeat_action_probability'.encode('utf-8'), repeat_action_probability)
self.seed()
self._action_set = self.ale.getMinimalActionSet()
self.action_space = spaces.Discrete(len(self._action_set))
(screen_width,screen_height) = self.ale.getScreenDims()
if self._obs_type == 'ram':
self.observation_space = spaces.Box(low=0, high=255, dtype=np.uint8, shape=(128,))
elif self._obs_type == 'image':
self.observation_space = spaces.Box(low=0, high=255, shape=(screen_height, screen_width, 3), dtype=np.uint8)
else:
raise error.Error('Unrecognized observation type: {}'.format(self._obs_type))
示例9: _seed
# 需要導入模塊: import gym [as 別名]
# 或者: from gym import utils [as 別名]
def _seed(self, seed=None):
self.np_random, seed = gym.utils.seeding.np_random(seed)
return [seed]
示例10: _seed
# 需要導入模塊: import gym [as 別名]
# 或者: from gym import utils [as 別名]
def _seed(self, seed=None):
self.np_random, seed = gym.utils.seeding.np_random(seed)
return [seed]
示例11: __init__
# 需要導入模塊: import gym [as 別名]
# 或者: from gym import utils [as 別名]
def __init__(self, client_id, base_url=allocator_base,
address_type=None, start_timeout=None, api_key=None,
runtime_id=None, params=None, placement=None,
use_recorder_ports=False,
):
super(AllocatorManager, self).__init__()
self.label = 'AllocatorManager'
self.supports_reconnect = True
self.connect_vnc = True
self.connect_rewarder = True
if address_type is None: address_type = 'public'
if address_type not in ['public', 'pod', 'private']:
raise error.Error('Bad address type specified: {}. Must be public, pod, or private.'.format(address_type))
self.client_id = client_id
self.address_type = address_type
if start_timeout is None:
start_timeout = 20 * 60
self.start_timeout = start_timeout
self.params = params
self.placement = placement
self.use_recorder_ports = use_recorder_ports
# if base_url is None:
# base_url = scoreboard.api_base
# if base_url is None:
# base_url = gym_base_url
# if api_key is None:
# api_key = scoreboard.api_key
# if api_key is None:
# raise gym.error.AuthenticationError("""You must provide an OpenAI Gym API key.
# (HINT: Set your API key using "gym.scoreboard.api_key = .." or "export OPENAI_GYM_API_KEY=..."). You can find your API key in the OpenAI Gym web interface: https://gym.openai.com/settings/profile.""")
if api_key is None:
api_key = _api_key
self._requestor = AllocatorClient(self.label, api_key, base_url=base_url)
self.base_url = base_url
# These could be overridden on a per-allocation basis, if you
# want heterogeoneous envs. We don't support those currently
# in the higher layers, but this layer could support it
# easily.
self.runtime_id = runtime_id
self.pending = {}
self.error_buffer = utils.ErrorBuffer()
self.requests = queue.Queue()
self.ready = queue.Queue()
self._reconnect_history = {}
self._sleep = 1
示例12: reset
# 需要導入模塊: import gym [as 別名]
# 或者: from gym import utils [as 別名]
def reset(self):
del self.client
self.init_airsim_client()
try:
# def simSetVehiclePose(self, pose, ignore_collison, vehicle_name=''):
# def simGetVehiclePose(self, vehicle_name=''):
# def simGetObjectPose(self, object_name):
self.client.enableApiControl(True)
self.client.reset()
# position = airsim.Vector3r(self.env_start_pos[0], self.env_start_pos[1], self.env_start_pos[2])
# heading = airsim.utils.to_quaternion(0, 0, 0)
# pose = airsim.Pose(position, heading)
# self.client.simSetVehiclePose(pose, ignore_collison=True)
if(self.first_run == 1):
# self.client.simSetVehiclePose(pose, ignore_collison=False)
self.first_run = 0
self.client.enableApiControl(True)
self.client.armDisarm(True)
# self.client.simSetVehiclePose(pose=self.air_sim_vehicle_pose, ignore_collison=1)
self.client.enableApiControl(True)
self.client.takeoffAsync(1)
self.client.hoverAsync()
self.get_state()
self.need_replan = 1
# self.client.simPause()
except Exception as e:
print(e)
print(colorize("===== Error in reset =====","red"))
self.init_airsim_client()
self.reset()
if (self.if_log):
self.plot_log()
self.log_idx = 0
self.step_count = 0
self.sum_reward = 0.0
self.sim_times = self.sim_times + 1
self.client.moveByAngleThrottleAsync(0,0,0.6,0,3e8)
time.sleep(1)
return np.array(self.state)
示例13: reset
# 需要導入模塊: import gym [as 別名]
# 或者: from gym import utils [as 別名]
def reset(self):
del self.client
self.init_airsim_client()
try:
# def simSetVehiclePose(self, pose, ignore_collison, vehicle_name=''):
# def simGetVehiclePose(self, vehicle_name=''):
# def simGetObjectPose(self, object_name):
self.client.enableApiControl(True)
self.client.reset()
# position = airsim.Vector3r(self.env_start_pos[0], self.env_start_pos[1], self.env_start_pos[2])
# heading = airsim.utils.to_quaternion(0, 0, 0)
# pose = airsim.Pose(position, heading)
# self.client.simSetVehiclePose(pose, ignore_collison=True)
if(self.first_run == 1):
# self.client.simSetVehiclePose(pose, ignore_collison=False)
self.first_run = 0
self.client.enableApiControl(True)
self.client.armDisarm(True)
# self.client.simSetVehiclePose(pose=self.air_sim_vehicle_pose, ignore_collison=1)
self.client.enableApiControl(True)
self.client.takeoffAsync(0.01)
self.client.hoverAsync()
self.get_state()
self.need_replan = 1
self.first_reward = 1
# self.client.simPause()
except Exception as e:
print(e)
print(colorize("===== Error in reset =====","red"))
self.init_airsim_client()
self.reset()
if (self.if_log):
self.plot_log()
self.log_idx = 0
self.step_count = 0
self.sum_reward = 0.0
self.sim_times = self.sim_times + 1
self.client.moveByAngleThrottleAsync(0,0,0.6,0,3e8)
time.sleep(1)
return np.array(self.state)
示例14: __init__
# 需要導入模塊: import gym [as 別名]
# 或者: from gym import utils [as 別名]
def __init__(
self,
game='pong',
mode=None,
difficulty=None,
obs_type='ram',
frameskip=(2, 5),
repeat_action_probability=0.,
full_action_space=False):
"""Frameskip should be either a tuple (indicating a random range to
choose from, with the top value exclude), or an int."""
utils.EzPickle.__init__(
self,
game,
mode,
difficulty,
obs_type,
frameskip,
repeat_action_probability)
assert obs_type in ('ram', 'image')
self.game = game
self.game_path = atari_py.get_game_path(game)
self.game_mode = mode
self.game_difficulty = difficulty
if not os.path.exists(self.game_path):
msg = 'You asked for game %s but path %s does not exist'
raise IOError(msg % (game, self.game_path))
self._obs_type = obs_type
self.frameskip = frameskip
self.ale = atari_py.ALEInterface()
self.viewer = None
# Tune (or disable) ALE's action repeat:
# https://github.com/openai/gym/issues/349
assert isinstance(repeat_action_probability, (float, int)), \
"Invalid repeat_action_probability: {!r}".format(repeat_action_probability)
self.ale.setFloat(
'repeat_action_probability'.encode('utf-8'),
repeat_action_probability)
self.seed()
self._action_set = (self.ale.getLegalActionSet() if full_action_space
else self.ale.getMinimalActionSet())
self.action_space = spaces.Discrete(len(self._action_set))
(screen_width, screen_height) = self.ale.getScreenDims()
if self._obs_type == 'ram':
self.observation_space = spaces.Box(low=0, high=255, dtype=np.uint8, shape=(128,))
elif self._obs_type == 'image':
self.observation_space = spaces.Box(low=0, high=255, shape=(screen_height, screen_width, 3), dtype=np.uint8)
else:
raise error.Error('Unrecognized observation type: {}'.format(self._obs_type))